【摘 要】
:
当放电等离子体和液体相互作用过程发生于大气环境中时,由于氮气(N2)、氧气(O2)以及水(H2O)的存在,在等离子体和液体界面处会发生一系列复杂的物理和化学过程,生成大量的活性
论文部分内容阅读
当放电等离子体和液体相互作用过程发生于大气环境中时,由于氮气(N2)、氧气(O2)以及水(H2O)的存在,在等离子体和液体界面处会发生一系列复杂的物理和化学过程,生成大量的活性氧化物和氮化物(Reactive oxygen and nitrogenspecies,RONS)。而正是这些物理化学过程和其生成的RONS,使得等离子体和液体相互作用系统可以应用到很多领域,污水处理即其众多应用之一。本篇论文主要对反应中产生的主要活性物质及其在有机物分解中的作用进行了实验探究。利用导数光谱法,本文对等离子体和液体相互作用过程中,溶液中生成的双氧水(H2O2)、硝酸根离子(NO3-)和亚硝酸根离子(NO2-)的量进行了简单快速地实时监测。实验结果表明,溶液的pH值在H2O2、NO2-和NO3-的生成和转换中发挥了至关重要的作用。文章也考察了系统中影响H2O2产量的因素。实验发现H2O2的生成量在很大程度上依赖于在等离子体和液体交界面处发生的溅射、水合离子的场致发射以及水溶液的蒸发等过程。因为反应在大气环境中进行,溶液中生成的硝酸(HNO3)和亚硝酸(HNO2)会导致溶液的pH值不断下降。为了实现对溶液pH值的控制,碳酸氢钠(NaHCO3)被用作酸碱缓冲液来调节溶液的pH变化。实验发现,等离子体的放电极性及溶液温度对NaHCO3的缓冲效果具有很大的影响。为了研究等离子体在污水处理中的应用,本文考察了等离子体处理甲基橙(MO)溶液模拟的有机废水。结果表明等离子体作用于液体时产生的短寿命物质氢氧根自由基(OH)在MO的分解中发挥了主导作用,而产生的长寿命物质如H202等,不能直接分解溶液中的MO。但是,当溶液处于低pH值的酸性环境时,N02-和H202会发生一系列的反应生成高反应活性的过氧亚硝酸(ONOO-)和亚硝鎓离子(NO+),从而加速MO的分解。当溶液中存在二价铁离子(Fe2+)时,Fe2+会和溶液中生成的H2O2发生芬顿反应生成OH,加速MO的分解。
其他文献
焊接技术是现代生产系统中常用的一种结构连接方式。为保证生产系统的安全运行,做好生产系统中焊接结构的检测工作至关重要。目前,对于焊接结构缺陷的检测最常用方法有超声波
碲化镉及其系列半导体具有高的平均原子序数、宽禁带宽度、大的密度和高电阻率等特点,是下一代室温型半导体射线探测器的理想材料之一。但是碲化镉还具有熔点高,导热系数小,
在过去的几十年中,锂离子电池(LIBs)凭借其高能量密度和长循环寿命而取得了惊人的进步,并广泛用于便携式电子产品中。与负极材料相比,设计高容量、低成本和环境友好型的锂电池
钢筋混凝土结构使用过程中由于钢筋锈蚀问题引发一系列事故,特别是在温度高、湿度大以及盐腐蚀等恶劣环境下,钢筋的锈蚀问题尤为严重,世界各国每年需要花费巨资用于修缮因钢
磺胺类抗生素近年来在城市饮用水管网中频频被检出,磺胺类抗生素本身可危害人体健康,且其在管网中可能引起生物膜基因变异从而导致抗生素抗性基因的产生,使得饮用水安全难以
随着生活的不断丰富和变化,突发公共卫生事件频发,成为每个国家都在关注的焦点。因为此类事件通常都具有突发性、持续性、复杂性等,这就要求政府时刻做好迎战的准备。尤其是近几年,诸如“H7N9禽流感”、“长春长生疫苗事件”、“MERS事件”之类的突发公共卫生事件接二连三的发生,破坏了社会正常秩序。由于突发公共卫生事件不仅关系到公众的身体健康,而且会影响社会的稳定和经济的发展,稍有不慎处理不当的话,极易成为
随着通信技术的发展,移动通信基站数量逐渐增多,相应的整个通信网络能源消耗也逐渐增加,为应对通信网络能源总成本的上升和减少碳排放,同时为保障偏远站点或无市电站点的基站
锂硫电池得益于高理论容量、低成本以及环境友好等特点,成为有前景的下一代储能设备。由于单质硫的多电子氧化还原反应而引起的缓慢动力学和差的导电性,导致单质硫的低利用率
随着能源匮乏和环境污染等问题的日益凸显,开发新型高效的清洁能源是当今世界关注的重中之重,固体氧化物燃料电池(SOFCs)受到了科学研究和工业应用等领域的广泛关注。由于固
近年来,罗茨真空泵在多个领域得到广泛应用,包括制药、航空航天、化工、薄膜和半导体行业等,对国民经济起着重要作用。屏蔽电动机作为真空泵的核心组成部件,因其屏蔽套的隔离