论文部分内容阅读
传统的宽频段接收/发射结构受阵列拓扑结构和电子元器件水平的制约,难以进一步扩展接收/发射带宽;另外,传统的发射多波束形成技术主要以子阵划分的形式实现,极大地降低了阵元的使用效率。因此,对于新型宽频段接收/发射结构以及同口径数字发射多波束形成方法的研究成为了当下的一个研究热点。本文首先在阵列层面研究了适于宽频段接收/发射的阵列形式,并提出了相应的阵列拓扑结构和阵列权值的联合优化算法;其次在接收/发射结构层面提出了两种新型多通道宽频段接收/发射结构,并对其信号处理流程和关键参数提取进行了研究;然后在算法层面对自适应多波束形成算法和恒定束宽低旁瓣发射多波束形成算法分别进行了研究;最后通过改进数字相控阵发射模式,提出了一种引入距离维参量的发射多波束形成方法。因此,本文以进一步提升接收/发射带宽和同口径发射多波束性能为研究目标,从系统结构到算法模块进行了立体式多维度研究。本文的主要工作及相关研究成果如下:1)研究了稀布圆阵的信号模型并建立了稀布圆阵方向图优化的目标函数与解向量。研究了基于新型选择算子的改进型遗传算法,改进后的遗传算法种群的多样性得到提升,陷入局部最优解的概率下降,适用于快速全局寻优。同时,研究了稀布圆阵方向图函数的一阶泰勒级数展开模型,通过设定一个解向量的极小增量近似地将方向图优化问题转化为迭代优化问题,每次迭代可建立为二阶锥规划优化问题,迭代优化算法极易陷入局部最优解,适用于小范围内的高精度寻优。本文结合以上两种算法提出了一种稀布圆阵的方向图优化算法,以遗传算法的解作为迭代算法的初始值,实现了阵元位置与阵元权值的联合优化,可获得高精度全局最优解。实验证明本文算法较现有稀布圆阵方向图遗传优化算法旁瓣性能更优。2)基于改进型Nyquist折叠结构,提出了一种基于正弦调频(SFM)调制本振的多通道Nyquist折叠接收/发射结构。在非合作模式下分析了接收信号与发射信号的处理流程,以及周期非均匀本振的约束条件。基于所提结构,提出了一种基于同步本振因子的Nyquist区(NZ)标号估计算法,并进一步提出了基于NZ标号估计的接收/发射波束形成方法。根据调制类型的不同,提出了一种基于周期线性调频(LFM)调制本振的多通道Nyquist折叠接收/发射结构。在非合作模式下研究了其信号处理流程并提出了基于去斜函数(DF)的NZ标号估计算法。在此基础上提出了基于NZ标号估计的接收/发射波束形成方法。最后,实验验证了两种结构宽频段接收/发射的有效性,以及NZ标号估计性能是影响波束形成性能的关键因素。3)构建了自适应多波束形成的数学模型并分析了传统自适应波束形成算法的鲁棒性。为同时应对有限快拍和自消情况,本文首先研究了动态对角加载算法并给出了具体的加载值;然后提出了相关向量子空间算法,最大限度地消除了强期望信号所导致的协方差矩阵估计误差,并针对弱期望信号对协方差矩阵进行补偿,使得自适应多波束形成算法针对强弱期望信号都具有较好的鲁棒性;最后,本文结合动态对角加载算法和相关向量子空间算法提出了一种基于协方差矩阵重构的自适应多波束形成算法,有效提升了自适应多波束形成算法在有限快拍和自消情况下的鲁棒性。另外,本文研究了一种期望信号导向矢量存在较小误差时的导向矢量修正算法,进一步提升了自适应多波束形成算法的鲁棒性。4)研究了最佳频率聚焦的基本原理以及最佳聚焦矩阵和聚焦频率的确定方法,并分析了窄带和宽带发射多波束形成算法的数学模型。针对窄带发射信号,提出了一种基于最低旁瓣二阶锥规划优化算法的发射多波束形成算法;针对宽带信号,本文联合最佳频率聚焦算法和最低旁瓣二阶锥规划优化算法提出了一种恒定束宽低旁瓣宽带发射多波束形成算法。仿真实验证明本文所提出的发射多波束形成算法在主波束稳定度、频率变化敏感度以及旁瓣电平等方面较现有算法更优。5)研究了频控阵的设计思路以及发射波束方向图函数,在二维圆阵的基础上,提出了一种改进型数字相控阵发射模式。从数学和实验两方面分析了引入距离维参量的改进型数字相控阵发射波束方向图,并在此基础上研究了距离与角度、距离与时间之间的耦合特性。考虑实际中发射端动态限制,本文将权值幅度动态约束问题转化为凸优化问题,提出了一种权值幅度动态与波束时不变性联合优化的最优权值求解算法,得到了幅度动态较小且发射多波束综合性能较优的权值。实验证明本文提出的改进型数字相控阵在空间有效形成多个点波束,且多维联合优化算法较现有算法所得空间点波束综合性能更优。