论文部分内容阅读
合成孔径雷达(Synthetic Aperture Radar,SAR)系统能够全天时全天候的进行高分辨成像,在军事及民用领域均占有重要地位。其中,多通道SAR系统,在高分辨宽测绘带成像(High-Resolution and Wide-Swath,HRWS)、地面动目标指示(Ground Moving Target Indication,GMTI)和干扰抑制等方面都取得了不错的进展,成为了国内外研究的热点。本文围绕多通道HRWS-SAR信号处理中的多普勒频谱重构、通道误差校正、GMTI等关键技术展开研究。主要内容及创新点如下:1.研究了多通道HRWS-SAR多普勒频谱重构技术。分析了系统方位采样不足条件下,地面散射点回波中信号方位角和多普勒的对应关系,构建了多通道HRWS-SAR回波信号模型。研究了基于空域自适应处理的多通道SAR多普勒频谱重构算法,重点包括基于自适应波束形成和基于多个多普勒方向的解模糊算法,通过仿真和实测数据处理对两种算法的性能进行了验证。2.研究了多通道HRWS-SAR通道误差校正技术。分析了多通道接收系统通道误差产生的原因,构建了多通道HRWS-SAR通道误差模型。研究了现有基于信号子空间的通道误差校正方法,并采用机载三通道SAR实测数据验证了该方法的可行性。针对现有通道误差校正方法依赖参数模型、难以精确校正方位空变误差、鲁棒性差等问题,提出了一种基于孤立强散射点的通道误差校正方法,通过子孔径信号处理技术自动从模糊数据中提取成像场景中孤立强散射点回波信号,获得其不模糊的多普勒谱,并用于通道误差的估计,从而实现误差的精准校正,最终,采用机载四通道SAR实测数据处理结果对方法的可行性进行了验证。3.研究了多通道SAR同时HRWS成像及GMTI技术。研究了现有多通道SAR/GMTI的处理方法,包含动目标检测和动目标参数估计等技术。分析了在HRWS成像模式下(多普勒频谱混叠),多通道SAR/GMTI技术在地杂波抑制、目标径向速度估计方面存在的新问题。针对上述问题,提出了一套完整的多通道SAR同时HRWS成像及GMTI信号处理方案。该方案在完成频谱重构成像的同时,采用多普勒域SAR-STAP(Synthetic Aperture Radar Space Time Adaptive Processing)技术实现杂波抑制,并将数字聚束成像引入目标速度估计过程中,有效克服了速度模糊对估计结果的影响,实现动目标运动参数的精确估计。最终,该方法能够同时获取地面高分辨率SAR图像以及GMTI结果,并将目标真实位置及运动信息标注于图像上。文中采用了机载三通道SAR实测数据对该方案进行了验证。