论文部分内容阅读
微泵(微致动器)是微机电系统(MEMS)流体驱动最关键的元器件之一,它在许多领域有着广泛的应用。微泵是一个复杂的多物理因素耦合系统,它不是传统泵的微型化。由于工作环境、工作介质的差异,微泵不具备通用性,需针对具体的应用进行分析设计。当前还没发现微泵完整的多物理因素耦合研究的成熟报道。本文旨在提出一种有效的数学模型对微泵进行数值分析,以指导微泵的优化设计。本文针对平面无阀压电微泵的结构、运动特点,采用浅水波模型模拟微泵流体运动,以无限大平板间的周期流动(即振动Poiseuille流动)近似微泵厚度方向的速度分布,对Navier-Stokes方程在泵腔厚度方向作积分平均处理,得到了描述微泵粘性流体周期流动的二维非线性浅水波方程,和流体压强的泊松方程。利用Galerkin有限元方法,在压电硅片小振幅振动条件下,忽略非线性项,得到微泵流体压强有限元矩阵方程。通过微泵压电硅片振动方程与流体压强方程的耦合,得到描述微泵周期振动行为的液-固耦合振动方程。本文对微泵液-固耦合系统进行模态分析得到微泵自然频率以及压电硅片振动响应。通过微泵流场计算得到微泵流量、流体压强、速度场分布特征。论文还系统研究了微泵厚度、压电片半径、微扩散管长度、小端面宽度、张角等微泵结构参数对微泵系统的自然频率、压电硅片振幅、微泵流量影响的定量关系。模态分析的结果表明,由于流体和压电硅片的相互作用,微泵液-固耦合系统自然频率比非耦合系统大大降低,尤其是第一阶自然频率降低最为显著。流动分析的结果表明,在微泵耦合系统的第一阶自然频率附近,微泵流量达到最大值,达到流量最大值的外载荷频率稍微高于微泵自然频率。泵腔流动随时间变化的特性,类似于在泵腔内点源(排流半周期)或点汇(吸流半周期)交替产生的流动。在吸流过程与排流过程的过渡时刻,泵腔内出现涡流现象。微泵流体压强呈周期性变化,压强变化与瞬时流量变化不同步。液体压强在泵腔中心处分布比较均匀,在泵腔与微扩散管交接的进出口处,流体压强变化剧烈。本文的研究还表明,微泵耦合系统自然频率随微泵厚度的减小而减小。在微泵厚度很小的情况下,流体粘性阻尼成为影响微泵自然频率的主要因素。微泵自然频率还随压电片半径、扩散管小端面宽度增加而增大,随扩散管长度增加而下降。在微扩散管张角5度到20度的范围内,微泵自然频率随张角的增大而增加。扩散管张角在15度左右微泵流量达到最大值。计算结果还表明,存在一个合适的扩散管小端面宽度和压电片半径与硅片半径比值,使微泵流量可能达到最大值。