论文部分内容阅读
随着经济的快速发展,互联网的普及,信息安全逐渐被人们所重视。人脸识别技术作为保护信息安全的重要手段之一,也逐渐被研究学者所重视。人脸识别作为计算机视觉技术和生物特征识别技术的一个重要分支,模式识别与人工智能的一个重要领域,其主要任务是对静态图像或动态视频进行识别。如何快速的正确的对人脸进行识别是目前人脸识别课题的一个难题。人脸识别算法的选取直接关系到人脸识别的识别率。本文首先介绍了国内外人脸识别的发展现状,并对人脸图像预处理方法进行了详细阐述。图像预处理的方法有很多,主要包括:灰度变换、图像锐化、图像的归一化、图像滤波、二值化等。其次,本文对主成分分析(PCA)算法、二维主成分分析(2DPCA)算法、线性辨别分析(LDA)算法进行了研究,并对三种算法进行了融合,形成了“PCA—LDA”算法及“2DPCA—LDA”算法。通过三个实验,验证这几种算法的性能。最后,本文对Gabor小波及支持向量机(SVM)进行了研究,Gabor小波具有良好的生物神经元细胞功能,对光照变化具有良好的自适应变化,SVM具有良好的分类效果,本文将Gabor小波和SVM与PCA算法及2DPCA算法相结合,提出了基于Gabor小波和SVM的PCA算法(Gabor+PCA+SVM)及基于Gabor小波和SVM的2DPCA算法(Gabor+2DPCA+SVM)。通过对ORL人脸库、Yale人脸库、自建人脸库的识别,验证算法的有效性,建立一个基于Gabor小波和SVM优化的人脸识别系统。