论文部分内容阅读
本研究以脱脂棉为原料制备多孔纤维素微球,经硅烷化改性后接枝分子印迹聚合物,制备了多孔纤维素基槲皮素分子印迹聚合材料并进行了系统表征,获得了制备400μm硅烷化多孔纤维素微球和该印迹材料的制备方法。在初步的应用研究中,优化了印迹材料的吸附条件,研究了该印迹材料的选择性吸附和循环使用性能,最后将该印迹材料用于从槐米萃取物中进行靶向分离槲皮素,纯化后的槲皮素纯度为68.79%,较常规溶剂提取法提高4.37倍。本研究制备的多孔纤维素基槲皮素分子印迹聚合物克服了传统分子印迹聚合材料粒径过小,难于分离的问题,解决了天然产物选择性提取分离中有机试剂消耗量大,耗能较高,操作较繁琐的缺点,达到了利用多孔纤维素基分子印迹聚合物对天然产物选择性靶向分离的目的。本研究的主要研究内容及研究结果如下:1.优化了硅烷化多孔纤维素微球的制备方法本研究以脱脂棉为原料进行碱化、老化、磺化后采用反相悬浮技术同时结合热熔胶转化法制备得到了多孔纤维素微球,然后经0.1 mol/L稀盐酸致孔后,在60℃下采用硅烷化试剂进行改性修饰,得到粒径为400 μm的硅烷化多孔纤维素微球载体,红外图谱中可见硅烷化试剂的特征峰,扫描电镜图中可见硅烷化修饰后的多孔纤维素微球表面变得更加粗糙,微孔直径变小。经研究得到的400 μm纤维素微球的优化条件为:表面活性剂用量:0.05 g/g CM变压器油用量:50mL/g CM搅拌速度:560 r/min反应温度:80℃反应时间:3h在优化条件下,纤维素微球的百分产率为78.7%,其形貌规整,粒度均匀。纤维素微球经0.1 mol/L的盐酸致孔后采用过量的3-(甲基丙烯酰氧)丙基三甲氧基硅烷在冰醋酸的乙醇水溶液中进行改性。最终得到的硅烷化多孔纤维素微球,红外可见硅烷化试剂的特征性基团,微孔结构明显,而且该载体可以使稀KMnO4溶液褪色,生成褐色沉淀。2.获得了多孔纤维素基槲皮素分子印迹聚合物的制备方法本研究以硅烷化多孔纤维素为载体,以槲皮素为模板,以4-乙烯基吡啶为功能单体,以乙二醇二甲基丙烯酸酯为交联剂,以偶氮二异丁腈为引发剂,结合传无载体分子印迹聚合物的制备方法,制得了高吸附容量的多孔纤维素基槲皮素分子印迹聚合材料。并对该印迹材料进行了系统表征,红外表征中聚合物的特征峰明显,扫描电镜可见微孔内部接枝大量印迹聚合物微球,热重分析显示该印迹材料热稳定想良好,X射线衍射表明接枝分子印迹聚合物后纤维素仍保持纤维素Ⅱ的晶型结构。制备多孔纤维素微球的优化条件为:功能单体:4-乙烯基吡啶乙二醇二甲基丙烯酸酯用量:396.44 mg硅烷化多孔纤维素微球/乙二醇二甲基丙烯酸酯=3/4(W/W)聚合溶剂:乙腈/N,N-二甲基甲酰胺=20/1(V/V)聚合温度:60℃洗脱剂:15%乙酸甲醇溶液超声洗脱时间:15 min在此优化条件下制备的多孔纤维素基槲皮素分子印迹聚合物的印迹因子为1.96,吸附容量为11.73-12.25 mg/g。该制备方法稳定可靠,制得的印迹材料形貌规整,特征明显,热稳定性良好。3.完成了多孔纤维素基槲皮素分子印迹材料的初步应用研究本研究对多孔纤维素基槲皮素分子印迹聚合材料的吸附条件,选择性吸附能力,循环吸附性能,以及对印迹材料从真实样品中靶向分离槲皮素的能力进行了研究。在浓度为0.5 mg/mL的槲皮素溶液中,通过单因素优化对吸附条件进行了优化,优化条件如下:吸附方法:洗脱摇床晃动混匀(30 r/min)吸附溶剂:乙腈/N,N-二甲基甲酰胺=20/1(V/V)吸附温度:15℃时间:8h在优化条件下测得多孔纤维素基槲皮素分子印迹材料对槲皮素的吸附容量为13.19 mg/g。在选择性吸附实验中该印迹材料对槲皮素选择性吸附良好,对槲皮素的吸附容量是柚皮素的3.63倍;该印迹材料进行4次循环吸附后其吸附性能仍可保留83.05%,解吸附率为98.6%。在从槐米中靶向分离槲皮素研究中,使用该印迹聚合材料分离得到的槲皮素纯度为68.79%,较常规溶剂提取法提高了 4.37倍。综上所述,本研究成功制备了多孔纤维素基槲皮素分子印迹聚合材料,用于从天然产物中靶向分离槲皮素,同时获得了硅烷化多孔纤维素微球载体和多孔纤维素基槲皮素分子印迹聚合物的制备方法,建立了该印迹材料吸附槲皮素的最佳条件,然后对其选择性吸附性能、循环使用性能研究,最终将该印记材料应用于从真实样品靶向分离槲皮素,获得极好的效果。本研究制备的多孔纤维素基槲皮素分子印迹聚合材料具有选择性吸附性能好、易回收、可循环使用的优势,为天然产物的靶向分离开拓了新材料,为生物基靶向分离材料在药学领域中的应用提供了研究基础。