Co9S8/碳基复合材料制备及其电化学储氢性能研究

来源 :哈尔滨工业大学 | 被引量 : 1次 | 上传用户:qiaomy
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
碳及其复合材料具有较高的理论储氢量,在能源领域受到了人们的广泛关注。但碳材料与氢的结合能力较差,以致现有碳基复合材料的储氢性能难以满足实际需求,因而开发高储氢性能的碳基复合材料具有十分重要的意义。本论文通过对碳基复合材料的理论设计、制备和改性一体化研究,获得了具有较高电化学储氢性能的Co9S8/碳基复合材料,为碳基储氢材料选材和应用提供理论和技术依据。
  根据金属对氢吸附能变化规律和氢溢流理论设计了具有较高氢吸附能力的ComSn/碳基复合材料的组成和结构,其中Co作为活化和吸附氢的中心,S起到连接Co和碳材料的作用,二维片状C60和rGO作为接收氢的载体。
  基于ComSn/碳基复合材料设计结果,利用高能球磨法制备了Co9S8/C60和Co9S8/rGO复合材料,通过SEM、XRD和电化学测试等手段研究了原料配比和转速对碳基复合材料组成、结构和储氢性能的影响规律,探讨了碳基复合材料的电化学储氢机制。结果表明,当Co9S8和C60质量比为3:1,球磨转速为500rpm时,Co9S8颗粒均匀分散于C60纳米片表面,结构呈类披萨状,储氢量约为4.03wt%,充放电50次后其容量保持率为75%,高倍率放电性能大于75%;当Co9S8和rGO质量比为6:1,球磨转速为700rpm时,Co9S8均匀包覆于rGO片层表面,呈层层堆积结构,储氢量约为4.82wt%,充放电50次后容量保持率达80%,高倍率放电性能大于76%。其中rGO的多层结构可提供更多储氢空间,因而Co9S8/rGO复合材料储氢性能更高。Co9S8/碳基复合材料储氢机制是首先Co9S8将氢吸附并活化,随后氢通过复合结构内部的溢流和扩散过程,迁移到邻近C60或rGO载体的表面,从而实现储氢性能的提高。
  为了满足可穿戴储能器件的需求,以Co9S8/rGO复合材料和rGO为原料,通过高能球磨结合真空抽滤法制备了Co9S8/rGO薄膜材料,采用SEM、XRD和电化学测试等手段研究了原料配比和转速等对薄膜材料组成、结构和储氢性能的影响规律,探讨了薄膜材料结构与其电化学性能之间的内在关系。结果表明,当原料质量比为1:4,球磨转速为800rpm时,Co9S8/rGO薄膜材料呈层叠结构,最大储氢量约5.44wt%,50次循环后的容量保持率可达85%,高倍率放电性能大于85%;该薄膜材料受外力弯曲时,其恒流充放电性能稳定,且其1000次弯曲和存储60天后的容量保持率分别高达96.32%和99.85%。这是由于薄膜内部层叠结构为外形改变提供了缓释空间,从而保证了Co9S8/rGO薄膜材料较好的储氢稳定性。
  采用第一性原理研究了Co9S8/碳基复合材料对氢的吸附行为,并采用FT-IR、Raman和XPS等手段对结构进行表征,结果表明,Co9S8通过C-S化学键与碳材料复合,避免充放电过程中团聚和脱落,CoS/C60和CoS/rGO复合结构单元分别可吸附3个和2个H2分子,其吸附能分别为-9.7kcal mol-1和-5.5kcal mol-1,键合后Co9S8中的电子向碳材料转移,增强了复合材料对氢的吸附能力。利用电化学测试方法进行了动力学性能分析,表明C60和rGO起到了支撑和连接Co9S8的作用,提供了电子传输通道,使Co9S8/碳基复合材料具有较好的动力学性能,其中Co9S8/rGO薄膜电极的高倍率放电性能大于85%,表明薄膜结构能够为氢的扩散提供快速通道,从而提高氢扩散动力学性能。
其他文献
随着电力系统规模的不断扩大,系统内元件越来越复杂,电力系统暂态稳定仿真变得越来越耗时,严重影响了电网规划与调度人员的工作效率。本文重点研究了暂态稳定分析与控制的快速算法,通过改进稀疏技术提高了串行暂态稳定仿真的速度,通过改进块对角加边(BBDF)算法提高了并行暂态稳定仿真的速度,并在此基础上与国电南自合作研发了一套实时决策紧急控制系统。本文取得的主要成果如下:提出了较小出线度最小前趋有源节点编号算
学位
无线电能传输是一种非接触式供电方式,具有方便、安全、可靠等优势,在厨电应用领域有着重要的研究及应用价值。但是,由于厨房电器种类繁多,在推广中其通用性与安全性遇到了挑战。本文以无尾厨电为研究对象,针对其无线供电系统不同传输结构的兼容性、补偿拓扑的通用性、人体在电磁场中的安全性,以及相关材料、结构优化设计等问题,进行理论和实验研究。  针对无尾厨电传输结构的兼容性,即同一负载可以使用不同结构的无线电源
学位
随着海洋小型设备在各领域越来越多的应用,设备的持续供能问题成为了制约海洋小型设备工作性能和续航能力亟待解决的问题,海洋环境能源的开发和利用使得解决这一问题成为了可能。波浪能作为海洋环境能源的重要构成部分,具有能量密度高、清洁、可再生和蕴藏量大且海上几乎无处不在等特点,更是解决这一问题的重要方法。以小型海洋装备的能量供给问题为研究对象,本文提出并设计和研制了一种自适应反转式波浪能转换装置,这套装置通
学位
干式空心电抗器被广泛安装于电力系统中,起到限流、滤波及无功调节等作用。运行中绝缘老化引起匝间绝缘击穿,甚至着火燃烧,是干式空心电抗器的主要故障形式。过电压及其作用下的电老化作为引起绝缘性能退化的主要因素一直是工程领域不断探索的研究重点。关于干式空心电抗器操作过电压产生原因、所遵循的规律及过电压作用下匝间绝缘失效机理的系统研究鲜有报道。本文主要针对干式空心电抗器操作过电压及过电压下匝间绝缘劣化规律等
随着科学技术的不断发展,人们对于电能传输系统的要求也越来越高。在许多应用场合下,传统的接触式电能传输技术已经不能解决实际问题。例如,在物联网、嵌入式传感等装备保障领域,如何为数量众多的分布式传感器节点持续供电仍是一大难题。近年来,磁耦合谐振式无线电能传输(WPT)技术发展十分迅速,为解决以上问题提供了一条新的途径。然而,要实现该技术的进一步推广与应用,在WPT系统的分析、设计与优化等方面还存在大量
学位
精密测量一直是科学研究前沿,磁场测量作为精密测量的分支,在生物医学、磁异常检测、惯性导航、太空探索、基础物理研究等诸多领域具有重大的应用价值。相比于其它类型的磁力仪,原子磁力仪在许多方面优势明显,其能够实现极高的灵敏度,同时又不需要严苛的工作条件,这使得原子磁力仪的应用前景更为广泛。鉴于原子磁力仪在诸多领域的重大应用价值,以及国内与国外存在的明显差距,开展原子磁力仪的研究显得尤为重要。本文对原子磁
学位
光刻技术是集成电路制造中的关键技术,也是所有微纳器件制造过程中不可或缺的一道工艺。光刻机是芯片光刻过程中的核心设备,其中工件台又是光刻机的重要运动部件,工件台要实现长行程、高加速度、高定位精度的平面运动。磁悬浮永磁同步平面电机(Permanent Magnet Synchronous Planar Motor,PMSPM)不仅具有良好的运动性能,同时其磁浮的支撑方式相比气浮支撑能够直接工作在真空的
锂/钠离子电池是便携式电子设备中的关键部分,而且它们能为可再生能源(例如太阳能和风能)的能量存储提供令人满意的解决方案。为了设计和开发用于锂/钠离子电池的新阳极材料,实验人员进行着大量的合成-结构-性质方面的实验。但这种方法耗时劳力,并且效率不高。第一性原理计算可以精确预测材料结构和性质的关系,从而可以加快阳极材料设计的效率。本论文通过第一性原理研究了基于二维材料蓝磷烯构建的异质结作为锂/钠离子电
学位
超级电容器和镍-金属氢化物电池(简称镍氢电池)是两种重要的电化学储能器件,在社会生活中起到越来越重要的作用。超级电容器具有功率密度高、循环寿命长等优点,但是能量密度偏低,生产成本较高。镍氢电池具有能量密度高、可大电流充放电、耐过充电和过放电、安全环保等优点。但是,镍氢电池能量密度多年来并没有实质性的提升。另外,目前商用超级电容器和镍氢电池柔性较差,很难应用于柔性领域。因此,研发低成本、高性能、柔性
学位
硫化锂具有比容量高、锂含量高和可与非金属负极匹配等优点,是一种具有应用前景的锂电池正极材料之一。但硫化锂存在导电性低和中间产物易溶解等问题,降低了正极的比容量和循环性能,限制了硫化锂正极的实际应用。本论文通过对硫化锂正极的结构设计、可控制备和储锂机制研究,获得了高性能硫化锂-石墨烯自支撑正极,为硫化锂正极选材和应用提供理论和技术支持。  依据固液扩散理论并结合石墨烯对多硫化锂吸附能变化规律,设计了
学位