铁氧化物半导体材料微观结构调控及其气敏传感器应用

来源 :吉林大学 | 被引量 : 0次 | 上传用户:wiltonx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着工业化和城市化的快速发展,以PM2.5为特征的大气污染问题日益突出,威胁着人们的健康。挥发性有机化合物(VOCs)是形成细颗粒物(PM2.5)和臭氧(O3)等二次污染物的重要前体,它们会导致雾霾、光化学烟雾等大气环境问题。大多数挥发性有机化合物,如甲苯、甲醛和丙酮,具有刺激或独特的气味,可致畸甚至致癌。基于半导体氧化物(SMO)的气敏传感器是与人类健康、空气污染和安全保护领域相关的最有前景的实用检测设备之一,其主要优点是高灵敏度、快速响应和恢复动态、易于操作和低成本。气敏材料是金属氧化物半导体传感器的重要组成部分,在众多的金属氧化物气敏材料中,氧化铁(α-Fe2O3)纳米材料传感器具有结构稳定、耐腐蚀等优点受到了很多的关注。但是,纯α-Fe2O3材料由于形貌的原因,电子交换很少,因此工作电阻大,灵敏度低,不利于用作气敏材料。因此,为了提高其气敏性能,α-Fe2O3半导体材料通过掺杂其它元素、多孔化、疏松化等结构和形貌的控制是未来的发展方向。本文以α-Fe2O3半导体材料作为研究对象,采用不同的方法对α-Fe2O3半导体材料的形貌和结构进行了调控,从而明显提高了基于α-Fe2O3半导体材料传感器的气敏性能。同时对其提高的敏感机理进行了研究。本文具体研究内容包括以下四部分:一、通过简单的水热和煅烧的方法在不添加模板的情况下制备了纳米片组装的层状多孔花状α-Fe2O3。而高孔隙率α-Fe2O3因其独特的结构而一直备受关注。扫描电镜(SEM)形貌表征结果表明,随着煅烧温度(400°C,450°C,500°C,550°C,600°C)的升高由纳米片组装的层状花状α-Fe2O3出现更多的孔洞。氮吸附脱附和X射线光电子能谱(XPS)研究表明,当煅烧温度为500℃时,分层花状α-Fe2O3的具有最大的比表面积(52.19m~2/g)和最多的表面氧空位。比较了基于不同煅烧温度下分层花状α-Fe2O3气敏传感器的气敏性能,随着煅烧温度的升高,样品对100ppm丙酮的灵敏度先增大后减小,当煅烧温度为500℃时达到最大值(44.2),其响应和恢复时间分别为4s和25s。此外,在500℃煅烧的分层多孔花状α-Fe2O3传感器还展现了较低的工作温度(210℃)、低的检测浓度(200ppb丙酮灵敏度为2.0)和好的选择性能。这些优良的气敏性能主要是由于其多孔结构、大的比表面积和丰富的表面氧空位,使其成为一种很有前途的丙酮传感器材料。二、传感材料的结构和表面特性被认为是制作金属氧化物半导体气敏传感器的主要因素。利用一步水热技术对α-Fe2O3半导体材料的形貌进行了有效调控。研究显示,乙二醇的用量对产物的形貌有很大的影响。从扫描电镜(SEM)照片可明显看出,随着乙二醇浓度的变化(从30ml到110ml),产物由杂乱的二维纳米片转变成由规整纳米片组装成的三维多孔α-Fe2O3微米花结构。当乙二醇浓度为70ml时,三维多孔α-Fe2O3微米花结构最为均匀和完善。氮吸附-脱附和XPS分析结果表明,此时其比表面积最大(63.69m~2/g),表面的氧空位和氧吸附位点最多。进一步的气敏实验表明,该条件下的三维多孔α-Fe2O3微米花结构的气敏性能最好。在较低的工作温度(210℃)下,三维多孔α-Fe2O3微米花(70 ml乙二醇)对100 ppm丙酮的灵敏度(49.4)最高,其它乙二醇浓度制备的材料对同浓度丙酮的灵敏度分别为8.2/30 ml、14.7/40 ml、38.4/50 ml、36.7/90 ml、10.3/100ml、4.8/110 ml。此外,三维多孔α-Fe2O3微米花(70 ml乙二醇)还展现了优异的选择性、短的响应/恢复时间(1 s/31 s)、较低的检测下限(0.2 ppm丙酮的灵敏度为2.2)和良好的稳定性。通过对α-Fe2O3半导体材料有效调控成由规整纳米片组装成的三维多孔α-Fe2O3微米花结构,其气敏性能显著提高了,气敏性能提高的主要原因是形貌的改变、晶粒尺寸的减小、氧空位和比表面积的增加。三、采用简单的水热-煅烧法制备了一种由Eu3+修饰的α-Fe2O3复合微米花状结构的气敏材料。为了进行比较,用相同的方法制备了纯α-Fe2O3微米花。扫描电子显微镜(SEM)图像显示,样品是由许多薄纳米片包围成一个松散的三维花状结构。用X射线衍射仪(XRD)、X射线光电子能谱(XPS)及氮气吸附脱附研究了样品的结构和比表面积情况,Eu3+修饰的α-Fe2O3复合微米花具有更多的表面氧空位缺陷和更大的比表面积,这对于材料气敏性能的提高是非常有益的。对基于纯α-Fe2O3和Eu3+修饰的微米花传感器的气敏性进行了系统测试。Eu3+修饰的α-Fe2O3复合微米花气敏传感器对含有50 ppm丙酮气体的灵敏度为83,是纯α-Fe2O3微米花传感器灵敏度的四倍(19),而且该传感器还具有短的响应时间(4秒)和恢复时间(38秒)。此外,Eu3+修饰的α-Fe2O3复合微米花传感器对丙酮还拥有低的检测下限0.1 ppm(其灵敏度约为2.1)、低的工作温度(145°C)及良好的选择性。Eu3+的高催化活性是提高气敏性能的主要原因。四、利用水热技术制备了由纯纳米片和掺锶纳米片组装而成的三维层状α-Fe2O3微米花。SEM形貌表征结果表明,Sr的引入使得微米花由更多层纳米片组装而成。XPS分析表明,Sr的引入使得能提供更多的表面氧空位缺陷和氧吸附位点,有利于气敏性能的提高。气敏测试结果表明,在低温(220℃)下,碱土金属元素Sr掺杂的α-Fe2O3三维层状微米花传感器对100 ppm乙醇的灵敏度(82.1)是纯α-Fe2O3三维层状微米花传感器对同浓度乙醇灵敏度(34.5)的2.37倍。而且,三维层状Sr掺杂的α-Fe2O3微米花传感器还展现了短的响应时间/恢复时间((3 s/22 s)、低的检测下限0.2ppm(灵敏度为1.8)和优异的选择性能。因此,Sr的引入显著提高了α-Fe2O3微米花对乙醇的气敏性能。
其他文献
随着微波通信的快速发展,移动电话和电子通信设备取得了很大的进步[1-3]。高频电介质材料在通信系统中扮演着重要的角色,因此被科学技术行业的研究人员和制造厂商们广泛地探究[4]。而在微波介电材料中扮演着重要角色的钽酸盐A2+Ta2O6(A=Ni,Co,Fe,Mn,Zn,Mg,Ca,Cu,Cd),正因为它们具备良好的介电性能,尤其是钽酸镁MgTa2O6,所以受到了国内外众多科研组的重视。此外钽酸镁Mg
氧化锌(ZnO)作为一种功能器件材料,由于其优异的特性及其在光学、电学、光电、压电、磁性和光催化等领域的重要意义而受到人们的广泛关注。氧化锌是一种II-VI族氧化物半导体,它具有带隙宽、激子结合能大、介电常数低、光电耦合速率大和结构稳定性强的特性。因此,ZnO作为新一代的半导体材料,在众多领域都具有不可或缺的地位。已有研究表明Be O和ZnO具有相同的六边形对称性,因此Be O被认为是实现宽禁带调
单硒化物层状半导体材料具有独特的各向异性晶体结构和优异光学和电子学性质,广泛应用于各种柔性电子及光电子器件。高压作为基本的热力学参量可以有效的调控物质的晶体结构和物理学性质,将高压技术应用于半导体材料研究,可以实现新材料的构造和新性质的探索和调控。高压下物质的晶体结构和电子结构会发生改变,载流子动力学行为也会发生相应的变化,通过研究高压下载流子动力学行为将使我们能够更为深入了解物质的相变行为。瞬态
自1990以来,肉类消费总量在我国所占的比例已达到世界总量的1/3,预计在2025年将达到6510万~1.001亿吨,其消费量以后还将进一步增长。随着我国国民经济发展速度的快速增长,消费者对肉类数量的需求转变为对肉类质量的把控。但是,随着肉制品消费总量增长的同时,其质量问题也随之出现,例如市场上出现的注水肉,不仅危害消费者的身体健康而且还威胁到了肉类行业的健康发展。因此为保证消费者的安全,对生鲜肉
我国是一个人口众多且农业历史悠久的国家,粮食是人们生存的基础,是人民生活发展的基石,可以说粮食的产量与质量关系到整个国家的民生大计,是至关重要的问题之一。根据有关资料显示从产量上来看,我国目前仅用全世界7%的耕地就养活了世界22%的人口,每一年的粮食产量非常巨大。因此粮食的安全存储就显得尤为重要。粮食的含水率作为衡量粮食品质的一项重要参数,是粮食在储存过程中需要密切关注与控制的。在粮食的储存过程中
根据工程教育专业认证的核心思想,坚持“以学生为中心”,以培养学生工程实践能力为目标,从建立课程质量框架、构建实践教学平台、提升创新实践能力三方面加强电气控制与PLC课程建设,重点从教学内容、教学策略、考核方式等方面深化课程教学改革。实践证明,课程建设与教学改革的措施和方案有效激发了学生学习的积极性,提高了学生的工程实践能力。
近年来,电子信息行业在全球蓬勃发展,我国也慢慢的成为了全世界最大的电子产品市场,各种电子产品种类繁多,这在很大意义上推动了我们国家的磁性测量的建设脚步,磁性材料在我们国家的使用中越来越广范,是我们国家经济建设的重要构成部分,甚至可以说,我们国家的经济建设和磁性材料行业的发展有很大的联系。我国的磁性材料产业位居世界前列,但是整体上,我国的生产企业,都存在着工艺水平和质量都一般的现状,这一系列因素也直
金属硼化物常表现出超导、超硬等优异的物理性质,它的相关研究在基础科学领域和工业领域都得到了广泛关注。前期工作表明,碱土金属硼化物MgB2是典型的Bardeen-Cooper-Schrieffe(Bcs)传统超导体,并在常压下创造了传统超导体超导转变温度39K的纪录。除此以外,部分过渡金属硼化物因其三维共价网络展现了优异的超硬特性。因此设计出新型硼化物,探索其内在物理性质,将有助于加深对其相关物理化
谷物是粮食产品的原材料之一,根据谷物的品种差异,其内部存有含量不同的水分。水分过高不仅浪费粮食的运输成本,在储藏时还会受到霉菌、有害昆虫繁殖的损害,造成谷物的发热霉变和变质,水分的多少直接决定了粮食产品的加工方式和储藏形式,对粮食产业的生产流程有着重要的意义。当前应用于颗粒状谷物样品的多种含水率检测方法中,微波法因其能够无损测量样品内部水分含量的优势被广泛应用。微波法测量颗粒状谷物含水率根据检测装
ZnO作为一种常见的低成本金属氧化物半导体,由于其优异的物理和化学性能而被广泛用作气敏传感器材料。本文合成了六棱柱状与纳米颗粒状的ZnO晶体,并进行了气敏特性研究和第一性原理计算。通过调控材料晶面、形态、掺杂和光场干预,研究了吸附前后气体分子的光学和电学性质,提出了提高ZnO材料的选择性和灵敏度的策略。为指导气敏传感器的可控设计提供了理论依据。主要的工作如下:第一、水热法合成了六棱柱状ZnO并进行