论文部分内容阅读
遗传算法是借鉴生物的自然选择和遗传进化机制而开发出的一种全局优化自适应概率搜索算法,对于非常复杂、高度非线性大型系统的优化求解,表现出比其它传统优化方法更加独特和优越的性能,是21世纪有关智能计算中的核心技术之一。 GA利用简单的编码技术和繁殖机制来表现复杂的现象,从而解决非常困难的问题。特别是由于它不受搜索空间的限制性假设的约束,不必要求诸如连续性、导数存在和单峰等假设,以及其固有的并行性,遗传算法目前已经在最优化、机器学习和并行处理等领域得到了越来越广泛的应用。 本文对应用遗传算法解决一个多目标组合优化问题——玻璃排版优化问题进行了深入研究,基于遗传算法对玻璃排版进行优化的研究迄今为止在国内外还未见到有相关资料的介绍。本文对问题的求解提出了一些新的实现方法,为类似问题提供了一条新的求解途径;设计并实现了玻璃排版优化系统及系统优化算法。 本文的主要工作如下:将一个多目标问题分解为多个单一目标问题,逐步求解,以降低整体求解难度;在用遗传算法求解有关问题中,使用不同的解码方法计算个体适应度,构造不同的遗传算法运行框架。根据求解问题的复杂度,个体染色体分别使用了单参数编码方法和多参数级联编码方法,染色体中的参数又分别采用了二进制编码、波兰表达式的符号编码、数字符号编码。针对具体编码方法的不同,为保证后代个体的合法性,算法中采用了单点交叉、部分映射交叉、顺序交叉、循环交叉等多种交叉算子和基本位变异、逆转变异、交换变异、反转变异、替代变异等多种变异算子。为提高算法运行效率,选择算子采用了比例选择与最佳个体保留选择机制相结合的方法。为加强遗传算法的搜索性能,还在算法中使用了融入传统爬山法的混合遗传技术和小生境技术。总结了使用分步求解方法求解大型复杂的多目标优化问题的一些处理技巧以及改进整个系统优化算法的方向。最后对玻璃排版系统中优化问题间的求解关系进行了分析,得出以下结论:①当要加工的玻璃块较少且玻璃块的总面积不超过玻璃原片的面积时,求解背包问题的算法不同,群体中解的质量差异较小,对整个系统的优化结果影响不大,并与要加工的玻璃规格无关;②当要加工的玻璃块较多时,求解背包问题的算法不同,群体中解的质量有较大差异,并且对布局设计问题的求解及整个系统的优化结果都有较大影响;③当要加工的玻璃块的规格不同时,对于同样一批玻璃块,GA使用贪婪法解码求解背包问题,其解中面积较大的玻璃块容易被优先选中排版,而GA使用惩罚解码求解背包问题,其解中被选中排版的玻璃块则较随机;④求解布局设计问题找到的合理布局排版方案不一定是最优方案,排版方案越优越有利于求解旅行商问题找到更短的最优切割路径。 本文的主要内容和结构安排如下:第一章介绍了本文的工作及工作背景,并对求解组合优化问题的传统方法和遗传算法进行了比较;第二章对遗传算法做了系统介绍。具体内容有:遗传算法与自然进化的关系,遗传算法的特点、基本实现技术等;第三章介绍了问题的解决方案和玻璃排版优化系统及系统优化算法的设计;第四章详 基于遗传算法的玻璃排版优化系统的设计与实现细讲解了求解玻璃排版优化中背包问题的遗传算法的设计及其具体实现;第五章详细讲解了求解玻璃排版优化中布局设计问题的遗传算法的设计及其具体实现,并对背包问题与布局设计问题的求解关系进行了讨论;第六章详细讲解了求解玻璃排版优化中旅行商问题的遗传算法的设计及其具体实现,并对布局设计问题与旅行商问题的求解关系进行了讨论,最后对玻璃排版优化中三个问题的求解关系进行了分析,提出了对系统优化算法进行改进的方向。