论文部分内容阅读
自从P.W.Shor和L.K.Grover的开拓性工作以来,量子计算已经受到了广泛的重视,量子计算机比传统计算机能更有效地处理一些问题。实现量子计算机的物理系统包括:核磁共振(NMR)系统、腔量子电动力学系统、量子点系统和离子阱系统。近些年来,由于腔量子电动力学和囚禁离子技术的发展,已经有许多工作尝试将腔量子电动力学和囚禁离子两种系统结合起来。事实上,也已经有大量的关于囚禁离子放置于腔中的实验研究,这些实验的发展意味着用囚禁离子-腔系统实现量子计算是可行的。 在本文中,我们提出了不用借助辅助能级的囚禁二能级离子在单模光腔中的两种量子计算方案,我们用两种不同的方法实现了量子逻辑门,这两种方案在实验方面各有自己的优势。第一种方案是用旋转波近似的方法得出系统有效哈密顿量,这个方案的实现最主要的是激光-离子的相互作用没有受兰姆-狄克参数限制(η(□)1),这样有助于降低阱的噪音和提高离子冷却速度。第二种方案是在离子-腔场的大失谐近似下得出系统有效哈密顿量,这样腔场是虚激发的,因此这个方案对腔的衰减是不敏感的,并且大大降低了对腔品质因数的要求。 最后,我们提出的实现量子相位门的两种方案都只涉及两囚禁离子的内态,仅一步操作即可获得,对量子计算的物理实现而言这一点是很重要的。众所周知,由于实际中退相干的存在,门操作的步骤越多,所用的计算时间就越长,因此在量子计算中减少门操作步骤是一个很关键的问题。可见我们提出的两种方案在实验上是可行的,是简单有效的方案。