【摘 要】
:
随着化石能源资源的逐步枯竭,太阳能分解水可能成为解决能源危机的重要途径。光电化学分解水最重要的问题是高效稳定半导体光电极的研究,钙钛矿相氧化物是其中的一类代表。本文侧重Bi系氧化物中的Bi Fe O3(BFO)和Bi VO4(BVO)。前者是一种典型的铁电材料,其薄膜中自发极化引起的内建电场能够帮助光生电子-空穴对分离,近年来主要作为光阴极而得到研究。后者是一种n型半导体,由于光阳极性能优异而受到
论文部分内容阅读
随着化石能源资源的逐步枯竭,太阳能分解水可能成为解决能源危机的重要途径。光电化学分解水最重要的问题是高效稳定半导体光电极的研究,钙钛矿相氧化物是其中的一类代表。本文侧重Bi系氧化物中的Bi Fe O3(BFO)和Bi VO4(BVO)。前者是一种典型的铁电材料,其薄膜中自发极化引起的内建电场能够帮助光生电子-空穴对分离,近年来主要作为光阴极而得到研究。后者是一种n型半导体,由于光阳极性能优异而受到重视。但Bi系材料普遍在酸性和碱性电解质中不稳定。本文采用Ti O2保护层的方法,来获得高效稳定的光电极
其他文献
由于纳米结构引起的物理效应,纳米金属薄膜作为一种电磁功能薄膜,展现出许多特异性能。这些特性是由其基本电磁参数决定的,如电导率(σ)、介电函数(ε)、磁导率(μ)等。研究超薄金属薄膜对电磁波的折射、吸收及透射作用,挖掘其潜能,在高效太阳能吸收,电磁辐射,噪音屏蔽吸收和净化等领域具有十分重要的意义。本文选择Ag,Cu,Co,Ni,Fe五种金属薄膜进行研究,从导电性来看五种材料均是良导体,但电导率有差别
原子系统的相干干涉效应会产生许多有趣的现象。如果原子密度很小(1013atoms/cm3或更小),局域场效应可以忽略不计。运用相干场来驱动光学介质,会使介质的吸收和色散关系发生极
彩虹引力(Rainbow Gravity)作为一个半经典的量子引力框架,被认为是双狭义相对论(Doubly Special Relativity,简称DSR)在弯曲时空中的推广。此方案最近主要由Magueiio和Smolin
人们发现,几乎所有的复杂系统都具有网络的结构,复杂网络的研究已成为当前科学前沿的一个研究热点。这种研究方法把复杂系统简化为节点以及连结节点的边的集合。节点代表系统
界面修饰层是国内外各研究小组的重要研究内容之一,目前这一领域的研究内容主要包括以下两方面:一、探究新型材料作为界面修饰层应用到太阳能电池中,二、改善已有材料的制作工艺,简化制备过程,使生产成本降低。目前修饰层的制备方法主要有真空蒸镀法、化学气相沉积法、脉冲激光沉积法、溶液浸泡法和溶液旋涂法等。首先分别采用溶液浸泡法和真空蒸镀法制备氯化钠薄膜作为阴极修饰层,进而制备了结构为ITO/PEDOT:PSS
基于光子晶体材料的基本特性与特点,上世纪90年代初Ph.St.Russell等人提出了光子晶体光纤的概念与设计。光子晶体光纤具有许多传统光纤不具有的特性,如无截止单模特性,灵活的色散
本文以B2-FeAl作为研究对象,采用分析型嵌入原子模型(EAM)和分子动力学方法(MD),详细研究了B2-FeAl低指数面的表面非谐效应及B2-FeAl(110)面吸附原子的振动特性。 本文在第
重费米子超导体作为超导大家族中的重要组成部分,一直是人们研究的重点方向,尤其是Ce-115系统中的CeCoIn_5,其常压下2.3K的超导转变温度是Ce基超导体中最高的,这为实验探索提供了很好的条件。CeCoIn_5具有相似于高温铜氧化物和铁基超导体的奇异物性,例如都具有准二维的费米面,反铁磁序和超导的竞争。大量实验表明CeCoIn_5的超导电性可能由反铁磁自旋涨落引起,目前普遍认为其具有d波非常
滚动轴承是广泛应用的重要机械基础件,其质量的好坏直接影响到主机性能的优劣,轴承钢接触疲劳性能则是轴承质量的重要基础,开展轴承钢接触疲劳性能研究,可以提高轴承可靠性,加快轴承产品的开发周期和质量的改进,开展轴承钢接触疲劳试验研究成为热点领域。基于滚动轴承钢接触疲劳与故障诊断技术,研发了“轴承齿轮材料接触疲劳试验测试系统”。计算了对材料接触疲劳性能有较大影响的接触应力,并通过实验验证。并根据需求调节转