论文部分内容阅读
光学元件的精度是影响光学系统整体性能的关键参数之一。随着天文光学、空间光学的发展,对光学元件的精度要求越来越高,对光学元件的数量要求也越来越大,传统的加工方法已经难以满足现代光学系统对光学元件的需求,计算机控制光学表面成形技术(Computer Controlled Optical Surfacing,CCOS)为代表的确定性抛光技术以其定量去除和确定性控制的特点,被广泛应用于现代光学零件的加工过程中。但是,确定性加工方法往往会在加工表面产生严重的中频成分,这些中频误差严重影响了光学元件的性能。此外,CCOS技术较为容易在工件边缘处产生边缘效应问题,这一问题阻碍了元件面形的收敛,同时影响了全口径内的中频误差。本论文研究工作的主要任务就是要有效抑制CCOS技术中容易产生的中频误差,减少边缘效应以抑制仝口径内的中频误差,使CCOS技术得以完善,提高超精密光学元件的加工能力。论文的研究工作包括以下几个部分: 1.基于CCOS的基本原理,设计并完成了数控加工工艺控制软件,实现了面形数据读取及处理、加工参数设置、抛光路径生成和机床控制文件输出的功能,利用输出的数控代码可以进行实际加工。 2.分析了CCOS技术中中频误差的主要来源,并针对误差来源,对抛光路径、抛光步距、抛光模井形沟槽在不同运动方式下的情况作了一系列的理论仿真及优化,通过这些不同工艺参数的优化达到抑制中频误差的目的。并且通过工艺实验有效消除了PSD曲线中的“尖峰”,且获得了较好的低频面形,验证了抛光工艺的有效性。 3.针对边缘效应对于中频误差的影响,通过控制边缘效应以达到控制全口径中频误差的目的。对常见的两种边缘压力模型:线性模型和阶跃模型,分别进行了抛光模露边情况下的压强仿真;并且进一步结合运动学方程,分别计算了两种压力模型下,在露边情况下的去除函数。并且做了一系列抛光模露边情况下的实验,与仿真结果作比较,找出更接近实际情况的理论模型,为解决CCOS技术中的边缘效应问题以减少全口径中频误差情况奠定了基础。 本文通过对中频误差控制技术中若干关键问题的细致研究,确定了一条能够有效控制中频误差的工艺路线,并且为中频误差的全口径抑制奠定了基础。