【摘 要】
:
随着电商的飞速发展,服装图像数据呈现爆炸式增长。在海量服装图像中,高效、准确地检索出目标服装是一个极具商业价值和学术意义的课题。传统的服装检索方法效率低、误差大,不利于推广。随着人工智能的发展,基于深度学习的服装图像检索再次成为热门的研究方向。本文着重研究基于残差网络的特征提取方法和距离度量算法。本文的主要研究内容如下:(1)提出了一种全新的基于膨胀卷积残差网络的服装特征提取模型(Dilated
论文部分内容阅读
随着电商的飞速发展,服装图像数据呈现爆炸式增长。在海量服装图像中,高效、准确地检索出目标服装是一个极具商业价值和学术意义的课题。传统的服装检索方法效率低、误差大,不利于推广。随着人工智能的发展,基于深度学习的服装图像检索再次成为热门的研究方向。本文着重研究基于残差网络的特征提取方法和距离度量算法。本文的主要研究内容如下:(1)提出了一种全新的基于膨胀卷积残差网络的服装特征提取模型(Dilated Convolutional Residual Networks,DCRN)。DCRN模型通过将膨胀卷积融入残差网络,从而提升网络深层语义信息的提取能力。首先,DCRN模型用STEM模块提取浅层细节信息;然后,通过DCRN模块,将膨胀卷积和残差网络相融合;最后,通过二值向量模块得到高维特征向量。实验证明,通过融合膨胀卷积,提高了残差网络对于深层语义特征的提取能力,减少了参数数目,提高了计算效率。(2)提出了一种融合Transformer编码器和DCRN网络的服装特征提取模型(Transformer-Convolutional Residual Networks,T-DCRN)。本文的方法是把transformer编码器模块融入DCRN网络。首先,对特征图进行位置编码;其次,通过6组多头注意力机制层和前馈网络,提取服装图像特征。实验证明,与其他残差网络相比,由于融入了Transformer编码器,T-DCRN网络对服装组件相对位置信息的感知能力更强,从而提升对于深层语义特征提取能力,体现了T-DCRN网络在服装款式理解上的优势。(3)在K-means算法框架中,提出一种混合距离度量算法(Mixed Distance measurement algorithm,MD),本文融合了马氏距离和余弦距离,并分析二者结合方式。实验证明,通过计算余弦距离和马氏距离之和进行度量学习,从而稳定高效地计算特征向量的空间距离;并分析了二者之和中超参数λ对检索结果产生的影响。为了检验本文所提模型和算法的性能,在Deep Fashion公共数据集上,本文进行了多项实验来评估本文提出的服装图像检索方法。实验结果表明,该模型和算法能够较好地解决服装款式识别问题,获得较好的检索精度。本文希望通过基于残差网络进行研究,利用最新的人工智能技术,提高服装检索效率。
其他文献
宁夏南部西海固地区是中国典型的生态脆弱地区之一。众多山地乡村聚落通过“内敛”“保守”“均衡”“缓慢”的空间形态特征,适应了艰巨的生存环境,体现出对各类扰动冲击的强大韧性及适应能力。然而,随着经济发展和城镇化进程的不断加快,乡村聚落空间形态对各类扰动影响缺乏足够抵抗能力。因此,在乡村振兴大背景下,对本地区乡村聚落空间形态演化特征和影响因素,进行专业分析和总结,有助于聚焦以西海固为代表的诸多地区乡村空
随着科技水平的进步与发展以及信息化办公的普及,人们久坐办公的时间越来越长。久坐时间的增加会引发各种与坐姿相关的疾病,这些疾病往往难以在短期内康复,严重影响到患者的生活和工作。因此,需要一个可以检测坐姿状态的外部设备辅助,以便于在发生错误坐姿的情况下得到提醒。本文制作了一个以柔性传感材料为基材的传感坐垫,并与深度学习算法相结合达到坐姿识别的目的。本文围绕基于柔性传感器的坐姿识别技术的研究,开展了四个
秸秆燃烧产生的气体会造成空气污染、危害人体健康,秸秆燃烧容易引燃周围的可燃物,引发深林火灾,造成巨大的生命财产损失。对秸秆燃烧产生的烟雾进行检测是监控秸秆燃烧的有效手段之一。传统的烟雾检测方法难以满足复杂场景下的检测需求,现有的神经网络烟雾检测方法在进行烟雾检测时容易对云、雾、湖面等类烟物体产生误报。因此,如何降低烟雾检测模型的误报率,成为一个亟待解决的问题。本文对基于语义分割区域光流增强的烟雾识
目的:对心力衰竭病人饮食行为量表(Scale for Dietary Behaviors in Heart Failure,SDBHF)进行汉化,并检验其信效度,为临床评估心力衰竭病人的饮食行为提供可靠的工具。方法:采用Brislin翻译模型对英文版SDBHF进行正译、回译、文化调适及预试验,形成中文版SDBHF。选择锦州市某三级甲等医院368例心力衰竭病人进行调查,评价量表信效度。结果:中文版S
近年来,随着旅游业的不断发展,国内外旅游小城镇数量迅速攀升,历史文化旅游的兴起,在弘扬了民族文化的同时,也为当地的居民提供了经济来源。历史空间是地域文化的精神内核,承载着人们社会活动的历史痕迹。如何在旅游开发中避免传统空间的破坏,保留当地文化特征,确保历史文脉的传承,遵循其自身演变规律,成为目前学者们关注的问题。以往空间设计大多采用定性研究,本次论文引入空间句法理论,以量化的方法提取景观空间特征,
通过分析高校风景园林专业的课程体系,梳理了三大工程类课程群以及当前课程体系中所存在的问题,提出了“新工科”背景下的风景园林专业4个主要的工程类课程协同培养策略,为培养新时期风景园林专业人才提供理论及实践探索。
服装图像分割技术广泛应用于服装检索、服装推荐、虚拟试衣等领域,越来越多的研究人员使用基于深度学习的语义分割网络对服装图像进行分割,并逐渐成为计算机视觉研究领域的一大热门。由于服装的属性繁多,面料款式纹理均有所不同,且服装图像中人体姿势和复杂场景较易遮挡服装,大多数基于深度学习的语义分割网络对服装图像进行分割后会出现服装边缘分割粗糙、分割精度差、服装遮挡和服装深层语义特征提取不够充分等问题。本文在现
近年来,基于图像的虚拟试穿技术的研究已逐渐成为研究热点。试穿的图像应该具有清晰的服装纹理、与人体形状匹配的服装变形和高质量的多视角试穿结果。然而,现有的大多数虚拟试衣方法由于缺乏对服装区域的充分约束,难以处理较大的服装变形,并且生成的图像与人体不能完美贴合,生成未知视角的试穿图像时服装容易失真。为了解决这些问题,本文设计了一种能处理各种服装形态、生成多个视角的试穿图像、同时具有高质量试穿结果的虚拟
在“快时尚”的时代背景下,基于深度学习的服装搭配技术成为个性化时尚设计、时尚检索等研究领域的热门。由于不同服装的颜色深浅、纹理图案等关键特征均有较大差异,同时不同用户群体对服装款式要求迥异,现有的基于深度学习的服装搭配技术存在服装特征表示不够完整、多模态特征融合相关性低、套装的匹配度评估不合理和互补单品匹配度差、推荐效率不高等问题。本文围绕服装搭配推荐算法的研究开展了如下工作:1.实现了基于多模态
在我国当前城市人口老龄化日趋严峻、居家养老作为我国养老模式的基础的形势下,城市社区中如何帮扶老年人解决养老难已迫在眉睫。经过养老服务事业的多年发展,越来越多社区中悄然发展出的社区嵌入式微型养老服务设施,能为老人提供适宜的专业化服务,为解决社区日渐增长的养老需求提供了行之有效的思路。西安市目前在社区嵌入式微型养老服务设施规范化管理、设计、运营等方面尚处在探索阶段。目前已投入使用的西安市社区嵌入式微型