论文部分内容阅读
运动目标具有高度动态性和随机性,探测信息的井喷增长与实际场景探测设备资源的不足产生了冲突,如何高效管理多源异构探测设备,及时为它们动态地分配探测任务并组合执行,成为构建探测系统的关键问题。现有研究已实现了设备的接入及探测数据的存储,而在如何合理调度探测资源并优化系统探测性能方面尚有欠缺:仅单方面考虑或过于强调了决定设备探测效能的某一因素,未能搭建起完整的探测效能评价体系;缺乏系统最终效能的评估与反馈,没有形成探测闭环框架,不利于长期累计效益的提升;对于动态调度的时机和影响因素分析不足,没有保证调度决策的动态响应;对遗传求解算法的优化不足,算法的效率不高,易出现过早收敛域局部最优解、丢失或漏探目标等情况。为弥补现有工作不足,本文建立了对探测实际效果进行分析和评估的通用数学模型,完善了评价探测性指标体系与目标函数;搭建了基于优化调度、协同探测和效能评估反馈的设备资源优化配置闭环决策框架,以效能评价值为反馈环节引入决策过程;分析了触发设备资源动态调度的时机和场景,与以时间窗口为尺度的周期调度相结合增强了实时响应性;研究了基于贪婪策略的设备调度算法和改进遗传算法,适用于本文数学模型中,完善了基因编码规则,改进了选择算子和选择步骤,设计了自适应非线性交叉和变异算子,调整了符合任务实际约束的交叉、变异步骤,新增了基因交流步骤,通过与最新算法的对比实验证明其在收敛性和全局寻优能方面具有优势和创新性。此外,本文以地理信息系统(Geographic Information System,GIS)地图和React框架为前端可视化基础,以浏览器/服务器架构和组件化设计思想搭建了仿真系统,以海洋探测环境为应用场景,实现目标探测态势和设备动态调度结果的可视化,进行的功能测试和性能测试证明了本文研究内容具备可行性和有效性。