论文部分内容阅读
本文在分析与总结国内外相关研究的基础上,围绕数字图像压缩编码和数字图像水印两方面的关键技术进行了深入研究,通过优化其算法结构、改进编码及水印流程等途径,提出了几种新算法。主要创新性成果如下:针对数字图像变换域系数的特点,对数字图像变换域压缩编码技术进行研究。提出了基于小波变换和色彩相关的图像编码算法,利用了彩色图像的相关性,尤其适合于低码率渐进传输系统;提出了基于小波变换和分布式算术编码的医学图像压缩编码算法,解码图像有很好的视觉效果、高的信噪比和高的压缩率尤其适合医学图像近无损编码场合;为了能很好的捕捉图像边缘信息的特性,提出了基于总变差模型和条带波变换的图像压缩编码算法,该算法克服了DCT图像压缩技术出现的块效应,特别适用于压缩纹理图像。针对图像感兴趣区域压缩问题,提出了两种适用于医学图像渐进传输的ROI编码方法。一种是基于活动轮廓模型图像分割的医学图像压缩编码算法,通过改进的活动轮廓模型获得图像的ROI结合小波变换实现数据压缩,解码端可以获得高信噪比和较高压缩率的近无损图像;另一种是基于模糊C均值聚类分割的医学图像压缩编码算法,通过改进的矩形分裂合并等编码方法对图像数据进行压缩,方法简单,可实现无损压缩。实验证明这两种编码方法可对医学图像进行较高压缩率的压缩,恢复图像质量满足实际应用的要求。对数字图像变换域水印技术进行了研究。提出了基于多描述编码和小波变换的数字图像水印算法。该算法应用信道编码理论中的多描述编码,利用交互块跳频频谱扩展技术在小波域嵌入水印信息,具有较强的抗噪声和抗剪裁攻击性能。为了提高水印系统的安全性及嵌入水印的视觉效果,提出了基于条带波变换的图像水印算法。水印进行Arnold变换、混沌加密调制和BCH编码后,嵌入到图像的条带波域。实验验证了该系统良好的鲁棒性,结果表明条带波不仅继承了小波的优势,即较强的抗剪切和抗压缩攻击能力,同时增加了水印系统的抗噪声能力。针对医学图像的实际应用背景,提出了一种基于ROI的轮廓波医学图像盲水印算法。通过改进的主动轮廓模型对图像进行分割,利用改进的差分技术和轮廓波系数与邻域均值比较的方法分别嵌入双重水印。该算法在解码端提取的数字水印有高的信噪比,能够保护版权,隐藏患者的隐私信息,且可确定并有效修复被篡改的区域,对常规图像处理具有较好的鲁棒性。