论文部分内容阅读
随着半导体制造技术难度不断增加,研发投入成本越来越高,以及集成电路面临的量子效应等物理极限,使得平面集成电路的性能和集成度提升速度放缓,而一些专业人士提出了超越摩尔定律这一新的发展概念,可以通过研发新器件、新结构,以及新的集成封装技术来提升系统的综合性能。在新一代的集成技术中,一种基于TSV(Through silicon via)的三维集成技术,因其新颖的设计模式和潜在的优势而得到迅速的发展和应用,这是微电子学一重要的发展方向,多功能三维集成系统能够促使摩尔定律继续发展。三维集成可以实现裸晶片或者封装芯片在竖直方向的堆叠集成,这种兼具制造技术和封装技术的设计模式可以实现更高的集成度、更低的互连延迟、更快的速度和异质多功能集成。虽然三维集成技术带了许多优点,但是还存在着许多和三维集成相关的设计约束和可靠性问题,这些问题是三维集成持续发展所面临的难点。例如,三维集成电路中电源分配网络模型有待完善,TSV的引入给系统电源完整性带来的影响,TSV阵列之间的噪声耦合以及对电源输送的影响,TSV和PDN(Power distribution network)在三维集成中的热耗散作用,以及三维集成中电源和热约束综合优化设计。本文主要围绕三维集成和电源分配网络展开,探究三维集成电源分配网络模型构建、TSV寄生参数影响、TSV噪声耦合、三维PDN及TSV散热、电热约束综合优化等问题。主要工作以及取得的研究成果:1、提出了一种三维PDN简易阻抗计算模型,以及一种改善TSV电源完整性的TSV优化方案,可以用于三维集成结构的阻抗及电源噪声分析。根据片上PDN的物理结构,采用积分方法获得了PDN阻抗方程,结合多层芯片堆叠的级联结构,获得了三维PDN阻抗计算模型。经过ADS(Advanced sesign system)验证,本文的模型精度较高,计算效率大幅提升。该模型可以用于分析TSV对三维集成PDN阻抗的影响特性,重点介绍了TSV的高度、半径、间距等参数对阻抗的影响。在保持TSV金属面积不变的前提下,本文采用多个小尺寸的TSV并联结构替代原来大尺寸的TSV,可以促使整个TSV链路电阻和电感减小,电容增加,从而可以有效地抑制TSV链路引起的电压降以及电源噪声等问题。经过计算和仿真验证,可以使得TSV引起的峰值噪声减小60%,这对于三维集成电源设计和优化具有重要意义。2、提出了一种用于分析三维集成电源分配网络中的TSV噪声耦合模型。三维集成中TSV的密度非常大,发生在它们之间的的电磁耦合效应会非常严重,本文根据TSV用于电源分配网络的排布结构,提出了一种基于多导体传输线的电磁耦合分析模型。该模型不仅能够计算TSV阵列中的S参数,还可以用于分析电路工作引起的SSN(Simultaneous switching noise)噪声耦合。经过ANSYS HFSS的仿真验证,该模型的计算结果误差小,计算效率高。进一步分析了芯片堆叠层数、TSV密度、片上PDN规格等参数对于堆叠结构的电源输送影响。该模型通过反映TSV之间的电磁波传播和反射,方便读者了解噪声耦合的物理原理,这对于进行大规模TSV阵列的噪声分析以及制定相应的噪声抑制措施有很大的帮助。3、提出了一种用于求解三维集成结构温度分布的数值计算模型,考虑到三维集成电源分配网络的物理性质和结构,本文对其热传导作用进行了重点的研究。鉴于片上PDN和TSV结构的差异,这里分别对TSV结构和片上PDN结构的等效热导率进行了建模和计算,并分析了TSV间距、TSV周围氧化层厚度、PDN金属间距、PDN中金属层数等关键性参数对于热传导的影响。把所获得的等效热导率结果嵌入到本文的数值计算方法,有限体积法FVM(Finite volume method)中,可以求解三维堆叠结构的温度分布。经过COMSOL的有限元仿真验证,提出的等效热导率模型和温度求解模型都具有很好的计算精度,并且和仿真相比,提出的数学模型计算效率高、消耗计算机资源少,能够有效地用于大规模集成系统的温度特性分析,具有很好的应用前景。4、研究了三维集成面临的电源和温度约束,根据基于TSV的三维堆叠结构,本文提出了一种TSV数量优化方案。通过网格类型的PDN结构特性以及谐振腔分析方法,结合PDN和TSV相连的多端口,本文计算分析了PDN的多输入阻抗特性,该方法考虑了PDN平面上的全局效应,具有重要的实际应用价值。鉴于TSV以及整个PDN网络具有的电源传输和热传导作用,本文根据不同功能的芯片堆叠特性,提出了不同层芯片单独优化,整体满足电源以及温度约束的电热综合优化方案。同时还给垂直方向不同功率芯片的堆叠顺序提出了关键性的建议,根据约束条件合理选择堆叠次序会提升堆叠结构的可靠性。该优化方案大幅度地减少整个堆叠结构中的TSV数量,可以减少制造成本,同时改善系统的整体性能。