论文部分内容阅读
随着城市轨道交通的快速发展,全国各地都有大量人群选择地铁出行,地铁隧道的安全问题也变得更加严峻。隧道收敛变形监测也是地铁隧道变形监测的一个重要部分。传统的钢尺收敛计测量方法测量效率较低,外业工作量大;使用测量机器人进行隧道断面收敛测量虽然较为方便,但成本较高,且仅能测量到断面上部分点位的坐标,监测时间长,测量精度易受环境因素影响。使用地面三维激光扫描技术对地铁隧道进行扫描只能在一定程度上提高效率,虽然测量精度较高,但数据采集的重复率太高,数据处理流程也较为繁琐。针对以上缺陷,本文提出将三维激光扫描仪和轨道小车组合在一起,并搭载里程计、距离传感器、倾斜传感器和内置计算机,配合使用扫描标靶,组成激光扫描检测小车,采用线扫描模式,让轨道小车沿隧道中的铁轨前进的同时就能对隧道壁进行扫描,极大地提高了外业测量效率。扫描仪在扫描隧道的同时,里程计、距离传感器和倾斜传感器实时记录激光扫描检测小车的前进距离、小车中心和线路中线的偏差和小车的横滚角、俯仰角。内业对数据进行处理时根据里程计数据和隧道线路设计文件计算小车的位置和方位角,再根据扫描仪和轨道小车的相对位置关系和小车的位置、姿态,初步计算扫描点在测量坐标系下的坐标,从点云中提取扫描标靶的中心点的扫描时间和坐标,进而对里程计进行约束。处理完成之后即可根据里程直接提取出对应的断面点,使用RANSAC算法提取噪声点和杂物点,并拟合断面曲线,计算断面收敛值。本文主要研究了激光扫描检测小车的测量原理,和测量数据的采集、存储、处理方法。针对线扫描模式提出了利用里程计和隧道设计文件对激光扫描检测小车进行初步定位、利用扫描标靶和CPⅢ点坐标对里程计和小车位置做进一步约束、使用RANSAC算法对隧道断面点云进行去噪和拟合等方法,最后计算地铁隧道的收敛值。为验证这一变形监测方法的可行性,本文在武汉地铁隧道中进行了扫描实验,并对采集的数据进行了处理和计算。结果表明激光扫描检测小车使用的测量方法能够满足地铁隧道变形监测的要求。对比与传统的隧道收敛测量方法和地面三维激光扫描技术,外业的数据采集效率更高。