论文部分内容阅读
随着近年来经济的飞速发展,我国对能源的需求急剧增加。煤炭是我国能源结构中比重最大的部分,其燃烧利用为我国快速发展作出了巨大贡献,但同时也造成了严重的环境问题。采用煤基多联产对煤炭资源进行分级利用是解决上述问题的良策,产出的合成气进行燃烧发电更加清洁高效,并且结合富氧燃烧技术可实现碳捕集,从而缓解温室效应。采用大涡模拟对湍流燃烧过程进行研究已得到广泛认可与应用,本文从控制方程组出发,引入低马赫数假设,并结合动态亚网格模型与带反应进程描述的小火焰模型,构建了适用于湍流燃烧过程模拟计算的大涡模拟程序。对发展的大涡模拟程序进行了详细的验证,其中包括无模型的人工数值解验证、冷态丙烷大空间射流验证与非预混甲烷自由射流火焰验证。通过与实验数据的详细对比,说明大涡模拟比雷诺平均模拟更为准确,本文所发展的大涡模拟程序能够对湍流燃烧过程进行良好的描述。分析了湍流与燃烧的相互作用,结果表明湍流流动能够通过增加燃料与氧化剂的接触面积达到强化燃烧的目的,燃烧对于湍流的强化作用带有一定的滞后性。此外,与Ansys Fluent中的LES模块相比,本文的大涡模拟程序能够在冷态射流工况下节省35%的计算时间,在射流火焰工况下节省55%的计算时间,并且有着更好的鲁棒性。采用大涡模拟程序针对典型稀释合成气的燃烧过程进行了数值研究,并着重研究了中心射流管壁厚度对于火焰根部燃烧稳定性的影响。研究结果表明,管壁厚度通过改变火焰根部附近轴向速度的空间分布影响火焰根部的稳定性,适当增加管壁厚度能够在不改变火焰结构的情况下增强火焰根部稳定性。综合考虑流动条件、燃料理化特性,提出无量纲数对火焰根部稳定性进行判定,并对该判定方法进行了验证,结果表明本文所提出的判定方法能够对火焰根部稳定行进行判定。采用大涡模拟程序对高压燃烧室内的甲烷燃烧过程进行了大涡模拟,研究了压力对于燃烧过程的影响,同时研究了不同氧浓度的富氧工况对于燃烧过程的影响,采用不同的富氧改造方案对燃烧室进行改造,分析了各改造方案的优劣,而后研究了伴流温度对于燃烧过程的影响。结果表明压力对于燃烧过程的影响不大,02/CO2=30/70时富氧火焰与空气火焰的分布最为接近,进行富氧改造时必须着重考虑伴流对于燃烧室内壁的保护作用,伴流温度对反应强度有较大影响,但对于有限空间内的燃烧过程而言,影响的最大因素为全局当量比系数。随着研究者对于燃烧过程认识的加深,详细机理的规模越来越庞大。本文结合带误差传递的直接关系图法、敏感性分析、准稳态分析,详细给出了反应机理简化方法,并利用添加臭氧的甲烷燃烧反应机理进行了实例示范,最终构建了22种物质、18步总包反应机理。通过与原详细机理的预测对比,证明了简化方法的可行性。对比了原详细反应机理、框架机理与总包机理的计算消耗,结果表明总包反应能够节约72%左右的计算时间。