【摘 要】
:
氢能由于零污染、高效率,具有广阔的发展前景。电解水制氢是制氢的重要手段之一,但在实际应用中,阴极材料的高能耗、高成本等问题制约了电解水制氢在工业上的发展。贵金属(precious metal,PM=Ru、Rh、Pd、Ag、Os、Ir、Pd和Au)催化剂具有极高的催化活性和稳定性,是极为优异的析氢材料,然而单纯使用贵金属作为析氢催化剂成本过高。单原子催化则可以在保证催化效率的同时降低贵金属的含量。用
论文部分内容阅读
氢能由于零污染、高效率,具有广阔的发展前景。电解水制氢是制氢的重要手段之一,但在实际应用中,阴极材料的高能耗、高成本等问题制约了电解水制氢在工业上的发展。贵金属(precious metal,PM=Ru、Rh、Pd、Ag、Os、Ir、Pd和Au)催化剂具有极高的催化活性和稳定性,是极为优异的析氢材料,然而单纯使用贵金属作为析氢催化剂成本过高。单原子催化则可以在保证催化效率的同时降低贵金属的含量。用过渡金属硫族化合物作为单原子催化剂的载体,可以有效提高单原子催化剂的稳定性。本文将贵金属以单原子的形式吸附在过渡金属硫化物表面,得到了一系列稳定性强、析氢活性优异的析氢催化剂。本论文研究结论主要包括以下几个部分:1.首先,我们对贵金属原子(PM=Ru、Rh、Pd、Ag、Os、Ir、Pt和Au)吸附单层Mo S2的稳定性进行了系统研究。不同吸附位点的研究结果表明,贵金属原子吸附在Mo S2的Mo原子顶位稳定性最好;对比贵金属吸附单层Mo S2的吸附能可以看到Ag和Au吸附体系的稳定性不如Ru、Rh、Pd、Os、Ir和Pt吸附体系。其次,电子结构分析表明,对于Ru、Rh、Os、Ir和Pt吸附体系,费米能级附近出现了新的电子态,并且Mo S2由半导体转变为导体且新的电子态主要由贵金属的d轨道提供;而Pd、Ag和Au吸附体系依旧呈现半导体性质。最后,析氢性能研究表明Ru、Rh、Ag和Pt吸附体系的析氢性能表现最为优异,其中Rh和Pt吸附体系的氢吸附吉布斯自由能比贵金属Pt更加接近0e V,析氢活性比Pt更好;由于Ag吸附体系的稳定性不足,所以不能作为优秀的析氢催化剂;其次是Os和Ir的吸附体系,氢吸附吉布斯自由能分别为-0.65e V和-0.7e V,析氢活性比Rh和Pt吸附体系略差。2.在单层WS2负载贵金属原子(PM=Ru、Rh、Pd、Ag、Os、Ir、Pt和Au)的研究中,通过贵金属吸附WS2的吸附能的比较发现,Os吸附体系的稳定性最好,而Ag和Au原子的吸附体系的稳定性相较于Ru、Rh、Pd、Os、Ir和Pt吸附体系较差。对电子结构的研究发现Ru和Rh吸附体系呈现金属性质,表现为导体,而其他吸附体系表现为半导体特性。同时,通过投影态密度还发现了S-p轨道、W-d轨道和PM-d轨道在不同能量范围内发生了不同程度的轨道杂化。最后,对贵金属吸附WS2的析氢性能进行了研究,研究发现Ru、Rh、Ag和Pt吸附体系具有良好的析氢性能。
其他文献
轻质石膏薄抹灰作业应用于民用建筑室内高精砌体墙面和剪力墙的抹灰,对于施工作业功效的提高、施工现场的作业环境的改善和施工进度的加快等各方面均得到了较好的实施;另外,该新型建材有着其自身的环保性和持久耐用的性能、价格经济实惠,粘接性能好、收缩性小、容易干燥以及较好的强度,若能够进一步加强对其施工作业过程中的技术策划、过程质量管控以及处理好细部节点等质量问题,那么,该建材及其施工工艺做法是值得很好的推广
少层或单层黑磷(black phosphorus,BP)是一种具有高载流子迁移率、光电各向异性以及层数依赖能带结构的直接带隙半导体,它的出现弥补了石墨烯和二维过渡金属硫化物等材料的不足,在光电子学领域具有很好的基础研究价值和器件应用潜力。黑磷量子点(Black phosphorus quantum dots,BP-QDs)是这种低维材料的制备形式之一,它在具有常规少层BP特性的同时,也有其独特光电
气孔作为植物与外部大气之间进行气体交换的主要通道,在调节植物光合作用及蒸腾作用中起到了十分关键的作用。植物学家们对影响气孔运动的成因进行了长久的研究及探索,发现构成气孔的保卫细胞通过其自身膨压的变化来控制细胞结构和体积,达到调控气孔运动的效果。保卫细胞中的淀粉对气孔运动起着关键的调控作用。拟南芥β型淀粉酶1(BAM1)特异的在气孔保卫细胞中表达,是调节保卫细胞内淀粉含量的重要因子。本文主要围绕BA
等离激元在波导、传感器和调制器等光学器件中具有重要应用。然而,由于传统等离材料,如金属等,具有较大的损耗和尺寸,故以这些材料为基础的等离器件存在一些难以克服的缺陷。石墨烯的出现为等离光学提供了更好的二维材料系统,但因为石墨烯的零带隙特性,使其在调谐能力和开关器件等方面受到了很大限制。近期,在等离光学领域广受关注的二维半导体则弥补了这一缺点。其中的代表材料,如单层二硫化钼(monolayer mol
北京卷、浙江卷、新课标卷和新高考卷语文试题在情境化设计方面颇具典型性。本文从语言运用情境的类型、情境材料的类型及情境化程度三方面分析得出,2019~2022年上述高考语文试题的情境化设计具有“依托具体化情境”“精选多样化情境”和“设计真实性情境”的特征。针对上述特征,教师应以多样的语言学习活动为载体,认真落实以“学习任务群”为核心的教学;改变以文学作品为主的教学内容选取习惯,重视对社会生活类材料的
由于激光器的广泛应用,研究者们发现适当地改变激光光束的本征函数后会产生一些新颖的物理特性,从而使得激光光场的调控成为光学研究领域的热门。早期的光场调控仅限于相位、振幅以及偏振。后来人们发现适当地降低激光的相干性即可得到部分相干光,该光束位于远场处的光强分布同其在源平面处的相干函数密切相关,通过调控其相关参数可出现一系列新奇的特性,这些特性使其在光通讯、光束整形与信息加密等方面有着重要的应用。近几年
废弃橡胶轮胎大量堆积,容易引起火灾、病害等问题,同时占用大量的土地、人力资源。随着我国汽车工业的迅速崛起和绿色化理念逐渐深入人心,处理废弃橡胶轮胎也成为社会关注的热点。将废弃橡胶轮胎加工成橡胶颗粒,应用于建筑材料是各国处理废弃橡胶轮胎的一种常用做法。与此同时,石膏作为一种低耗环保的建筑材料,目前常用于室内抹灰、自流平砂浆,并逐渐得到推广。橡胶颗粒在混凝土、水泥砂浆中的应用研究已经比较成熟,但在石膏
自然界中生命体的生长发育和形态建成与年龄密切相关。年龄是一个不可逆过程,所有的生命体都要经历从幼年期到成年期的转变,进入生殖期,最终走向衰老和死亡。拟南芥在营养期相变对生长发育的影响主要体现在叶片形态的变化。研究发现miR156及其靶基因SPLs是介导植物年龄的关键调控因子,在调控植物叶片的年龄发育形态建成和开花过程中起着关键作用。油菜素内酯(Brassinosteroid,BR)作为一种甾醇类激
街道作为重要的活动场所,影响着老年人步行出行的发生频率与分布格局。以大连市主城区为例,从活动能力视角切入,选取住区外部、住区自身及住区内部三个维度,分别涵盖街道连通性、街廓尺度与步行安全性,结合老年人活动能力调查数据,探究街道可步行性与活动能力水平的关联性。结果表明,街道连通性与身体锻炼和休闲社交活动积极相关,适宜的街廓尺度对休闲社交活动具有促进作用,提升步行安全性有助于日常活动出行,并据此提出满
小麦属于甜土作物,目前大面积推广小麦品种普遍耐盐碱能力不强,在盐碱等不利环境条件下往往造成大幅减产。盐碱胁迫往往相伴而生,但是碱胁迫给植物造成的伤害比盐胁迫更严重。对小麦耐碱性状进行QTL定位并鉴定耐碱功能基因是保障在盐碱等不利条件下实现小麦稳产的有效途径。山融4号(SR4)是从小麦/长穗偃麦草不对称体细胞杂种中筛选出来的耐盐碱渐渗系新品系。大田及盐碱池种植实验均证实SR4具有很强的耐碱性,是研究