古镇景观照明规划设计研究

来源 :北京工业大学 | 被引量 : 0次 | 上传用户:a2590222
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在我国经济持续快速发展的大背景下,国民对于精神层面的追求日益提高。不仅可以体验慢节奏生活而且可以与自然进行深层次交流的古镇旅游受到了大家的热捧。近日“夜游”的流行,逐步暴露了我国古镇夜景照明方面的缺陷。长此以往,古镇夜景照明的不成熟不仅会限制古镇的发展还会破坏古镇的整体形象。因此本文对古镇夜景照明规划展开研究,以期对我国古镇夜景照明理论体系进行完善。
  首先本文对我国部分古镇进行实地调研,通过调研对古镇目前的夜景形象和夜景发展程度有了初步了解,并通过调研归纳总结了古镇夜景照明现存在的普遍性问题,为古镇夜景观照明规划体系的研究提供现实依据;然后,通过对古镇相关理论知识进行全面系统的学习,为研究古镇奠定了理论基础。由于我国古镇类型众多,将各个古镇进行照明规划分析并不现实,因此本文按照照明规划的需求将古镇进行分类研究。并根据理论研究成果筛选出能力范围和时间范围内可以完成研究的古镇类型进行深化分析。结合导师指导、实践经验和相关文献提供的理论依据,总结出了古镇夜景照明规划设计手法,并对古镇中的自然景观、水系、公共建筑、构筑物、古镇风俗民俗的照明设计表现手法做出阐述,给出灯具选取的参考意见。其次,在研究中发现我国对于古民居照明设计手法的研究暂不成熟,但古民居在古镇建筑物中占有很大比例,也是照明规划体系中重要的载体类型,因此对我国民居的照明设计手法进行研究具有必要性。本文根据我国民居形态结构将民居进行分类,并针对每一类民居进行了照明设计研究,给出每一类民居需要进行重点照明的部位。最后,将本文的研究结论应用于实地调研的案例,验证理论成果的适用性。
  通过研究,本文系统的总结了古镇景观照明规划设计手法以及各类民居的照明设计手法,以期完善我国在这方面理论研究,为古镇夜景照明的发展做出微薄贡献。
其他文献
近年来,随着互联网技术的普及和快速发展,人们能够通过网络获取大量的标注数据,大数据和人工智能技术也因此在很多领域得到了质的飞跃,如图像识别,语音识别等。然而目前的主流的图像识别和分类算法都是基于深度神经网络架构,都依赖于大量的标注数据,在面临数据匮乏的场景时,往往不能有预期的表现。因此基于小数据集的研究,即少样本学习,也显得十分重要。为了解决这一问题,本文以图像分类任务为载体,研究了半监督小样本特
学位
强化学习是一种机器学习方法,被公认为是实现通用人工智能的关键技术之一。随着现实应用场景中的问题越来越复杂,高效强化学习算法的研究越来越受到关注。一方面,为解决复杂问题,强化学习方法常采用深度神经网络作为策略和价值函数的表示,由此产生非凸和非光滑的优化问题,使得梯度强化学习方法容易陷入局部最优解中,而无梯度强化学习方法虽能避免该问题,但当问题维度较高时,其样本利用率极低。因此,如何提高无梯度强化学习
学位
近年来,随着深度学习技术的飞速发展和广泛应用,神经网络模型的深度随之增加,其计算量和访存量也不断增加,这给计算机硬件设计和软件优化带来了巨大的挑战。卷积神经网络是深度学习领域的代表性算法之一,在卷积神经网络中,卷积运算是计算和访存密集型运算,卷积层占整个卷积神经网络计算时间的90%以上,因此优化卷积运算对加速深度学习算法的运行是至关重要的。由于移动设备同时受到算力和功耗的限制,许多轻量级的网络应运
学位
近年来,人工神经网络技术被广泛应用于图像、语音、视频处理等领域,并且取得了很大的成功,是当前学术界的研究热点。卷积神经网络为了解决更加复杂抽象的问题,追求更高的识别准确度,网络模型的规模和层数在不断增大,计算复杂度和计算量也随之增加,这在通用计算平台上部署加速时存在严峻的性能和能效问题。基于FPGA的神经网络加速器能充分利用CNNs算法并行性,是一种高效的解决方案,但以往静态重构设计方法存在资源利
学位
物联网、电子商务等应用的快速发展使得数据的获取和生产速度不断提升,由此对数据库系统的写入性能也提出了更高的要求。以LSM-tree为基础的键值数据库系统(如LevelDB、RocksDB等)依靠LSM-tree的高写入性能,已广泛应用于各类大数据应用场景。LSM-tree将键值数据缓存在内存中,并采用顺序写的方式以SSTable的方式持久化到磁盘中。SSTable在磁盘中被进一步组织成多层结构。随
学位
虽然强化学习已经成功应用在许多领域,但强化学习的应用仍然受到奖励稀疏、环境不稳定性等问题的限制。强化学习的性能很大程度上取决于奖励信号多大程度上准确描述了设计者的目标,以及多大程度上处理了环境的不稳定性,这实际上反应了建模的准确程度和求解过程的稳定程度。因此奖励函数自适应与环境动态自适应是强化学习应用于非标准化环境的关键,这要求算法自动化设计奖励函数,并且在复杂的环境中自适应地求解。本文从环境建模
学位
学位
互联网上内容的爆炸式增长导致用户很难发现真正感兴趣的信息,造成了信息过载的问题。个性化推荐系统可以通过用户的历史行为数据来挖掘出用户的偏好,进而从浩如烟海的信息中给用户推荐少量感兴趣的内容,从而解决信息过载问题。目前,大多数推荐系统只利用用户的隐式反馈行为,如点击等。然而,用户行为可以包含多种信息,如时间、空间信息等。此外,除了正反馈行为,用户也会有一些负反馈行为,例如推荐系统给用户推荐了一些物品
学位
学位
该文在综述网络安全和人工智能理论的基础上,深入论述了基于网络和主机的入侵检测系统(Network and Host based Intrusion DetectionSystem NHIDS)设计的基本理论,方法和技术.文章介绍了基于网络和主机的入侵检测系统的系统结构设计,把系统分为数据采集,数据处理,入侵检测和检测结果综合决策四个部分.数据采集主要通过抓取网络数据包和读取主机系统信息获取数据,在
学位