基于多源信息融合的马铃薯分级无损检测方法研究

被引量 : 0次 | 上传用户:jieswh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
马铃薯内外部品质的检测直接关系到其加工利用率和增值率,同时也是马铃薯工业化生产加工的首要步骤。近年来,虽然机器视觉和近红外光谱技术分别在马铃薯外部和内部品质检测和分级研究中取得了一定的进展,但还存在无法同时对马铃薯内外部品质同时进行检测的问题。针对这一问题,该文利用机器视觉技术和近红外光谱技术,研究了基于多源信息融合技术的马铃薯分级无损检测方法。试验以克新一号马铃薯为研究对象,对畸形、黑心、机械损伤、发芽和合格等5类不同内外部品质的样本进行分级检测研究,研究了多源信息融合技术检测马铃薯品质的图像和光谱特征提取方法以及融合方法,并最终建立了马铃薯分级融合模型。1)为有效的避免背景对马铃薯图像分割的干扰,该文提出了视觉显著性与色调维相结合的Saliency-H分割方法,并比较了其与灰度分割法和色调维分割法的分割效果。灰度分割法由于其无法分割出完整的马铃薯区域,故不适用于在线马铃薯图像分割,而色调维分割法和Saliency-H维分割法均能完整分割出马铃薯区域,其中Saliency-H维分割法在分割速度、数据压缩和马铃薯定位等方面较色调维分割法具有较大的优势,色调维分割法平均每幅图像耗时为551.7ms,而Saliency-H法减少了74ms,仅需477.7ms。2)针对马铃薯表面灰度不均匀,图像特征难以有效覆盖马铃薯样本集的问题,该文提出了灰度梯度与流形学习组合的方式提取马铃薯图像特征,比较了不同的图像特征组合方式对模型的影响。文中所采用的灰度梯度算法为Freeman链码和方向梯度直方图,流形学习算法为等距映射和主成分分析,在4种算法组合中,方向梯度直方图与主成分分析为最优组合,建模所需图像特征数量最少,仅需23维特征(10维方向梯度直方图特征与13维主成分特征),模型即可达到最优。3)建立了基于机器视觉技术的马铃薯分级检测模型。图像灰度梯度与流形学习特征不同的组合方式所建4个模型对马铃薯外部品质(畸形、机械损伤和发芽)的分级能力均高于内部品质(黑心),其中方向梯度直方图与主成分特征组合而成的图像特征所建模型最优,对畸形、机械损伤和发芽样本的识别率分别为93.75%、83.33%和95.45%,而对黑心和合格样本的识别率分别仅为77.27%和71.43%。4)建立了基于LabVIEW平台的马铃薯外部品质在线检测系统。以38个不同外部品质的马铃薯样本为检测对象,对长径、短径、高径、薯形(类圆、椭圆、长形)、畸形、机械损伤、发芽和合格8项外部品质指标进行检测,畸形、机械损伤、发芽和合格4项外部品质定性指标的识别率为89.47%,对类圆、椭圆和长形3类马铃薯的识别率为100%,对长径、短径和高径的检测最大误差分别为2.9mm,2.0mm和1.0mm,单幅图像平均耗时为100ms。结果表明该文提出的马铃薯图像分割算法、特征提取方法和模式识别方法可实现马铃薯外部品质多项指标的在线检测。5)比较了波段优选算法和流形学习算法的近红外光谱特征提取方法的优劣。文中所采用的波段优选算法为遗传算法和连续投影算法,流形学习算法为拉普拉斯特征映射法、核主成分分析和主成分分析,对于5种近红外光谱特征提取方法所建的马铃薯分级模型,利用主成分分析提取的近红外光谱特征所建模型最优,其最优预处理方法为MSC,最优主成分数量为20,模型对训练集的识别率为97.88%,对测试集的识别率为83.87%,结果表明对于马铃薯近红外光谱特征提取方法,流形学习算法优于波段优选算法,为一个近红外光谱马铃薯分级模型对马铃薯内部品质多项指标的同时检测提供了技术支持。6)建立了基于近红外光谱技术的马铃薯分级检测模型,波段优选算法和流形学习算法所建的分级模型对马铃薯内部品质(黑心和发芽)的识别率均高于外部品质(畸形和机械损伤),其中主成分特征所建模型最优,对黑心和发芽2类样本识别率较高分别为90.91%和95.45%,而对畸形、机械损伤和合格样本的识别率分别仅为75.00%、75.00%和76.19%。7)利用LabVIEW实现了近红外光谱技术的马铃薯分级检测系统软件,黑心、发芽和合格3项马铃薯内部品质的识别率达到95.45%。在算法执行效率方面,平均每条光谱的预处理耗时为3.4ms,20维主成分提取耗时为14.6ms,建模耗时5137ms,利用模型对单条光谱测试,平均耗时为15.0ms,可实现30条/s的检测效率,为一个近红外光谱模型在线检测马铃薯内部品质多项指标提供了技术支持。8)确定了多源信息融合技术检测马铃薯内外部品质的融合方法,比较了不同融合方法所建马铃薯分级检测模型的检测精度。以畸形、机械损伤、黑心和发芽和合格5类马铃薯样本为研究对象,建立马铃薯内外部品质多项指标的多源信息融合模型,决策层融合方面,采用机器视觉和近红外光谱所建支持向量机模型的概率输出为基本概率赋值函数,以DS证据理论为决策层融合方法,建立决策层融合模型,对训练集的识别率为100.00%,对测试集的识别率为93.55%;特征层融合方面,利用方向梯度直方图与主成分分析组合的方式提取图像特征,利用主成分分析提取光谱特征,将图像和光谱特征作为模式识别的输入,分别利用Adaboost和支持向量机建立特征层融合模型。AdaBoost所建模型对训练集的识别率为100.00%,对测试集的识别率为91.40%,支持向量机所建模型对训练集的识别率为100.00%,对测试集的识别率为95.70%。结果表明对于马铃薯内外部品质多项指标的检测,支持向量机特征层融合优于DS决策层融合,DS决策层融合优于AdaBoost特征层融合,那么,支持向量机特征层融合模型为最优的马铃薯分级融合模型。9)建立了基于多源信息融合技术的马铃薯分级检测模型,可实现一个融合模型同时检测马铃薯内外部品质多项指标。融合模型对畸形、黑心、机械损伤、发芽和合格样本识别率分别为100.00%、95.45%、91.67%、100.00%和90.48%,相对于机器视觉所建马铃薯分级检测模型,融合模型对畸形、机械损伤、黑心和发芽和合格5类马铃薯样本的识别率分别提高了6.25%、18.18%、8.34%、4.55%、19.05%,而对于近红外光谱所建马铃薯分级检测模型,融合模型对上述5类马铃薯样本的识别率则分别提高了25.00%、4.54%、16.67%、4.55%、14.29%。10)利用LabVIEW实现了多源信息融合技术的马铃薯分级检测模型,并对图像分割、图像特征提取、光谱预处理、光谱特征提取、相应指标测取等进行了测试,每个样本的平均总耗时低于140ms,能实现每秒7组图像和近红外光谱数据的处理速度。结果表明,基于多源信息融合的马铃薯分级检测模型的识别率优于单一的机器视觉或近红外光谱所建模型,为利用多源信息融合技术在线检测马铃薯内外部品质多项指标提供了技术支持。
其他文献
粮食安全问题一直是国内研究的焦点问题。基于粮食供应链管理方法,研究粮食供应链上粮食生产和经营主体的利益补偿协调机制,提高粮食供应链整体竞争优势,对稳定粮食生产与构建粮
遗嘱继承是我国《继承法》中规定的一种重要继承方式,体现了立遗嘱人处置其身后遗产的真实意愿,现实中人们对设立遗嘱的需求也愈来愈强烈。随着市场经济的不断发展,实践中出
滇西北地区由于高山深切峡谷和陡坎地貌及活动性断裂的悬崖地貌,造成山体不稳定;只有加强保护宣传工作和监测、自救措施到位,才能减少灾害带来的影响.
青质料、黄质料、灰质料和隧道石是四种具有不同风化程度的填料。击实试验结果揭示经击实所形成的结构与粒料组成、含水量等因素的相关关系。击实前后粒料级配的变化分析可揭
总结枸橼酸钠抗凝在大面积烧伤病人连续性肾脏替代治疗中的护理,强调应加强病情监测、正确连接和管理各输注管路、建立通畅的血管通路、避免非计划下机、避免枸橼酸钠抗凝的
随着国家对医疗体制改革进程的迅速推广,药品集中招标采购,基本药物配送制度,公立医疗机构改革等相关配套政策都已陆续出台。2009年7月24号《医疗卫生体制五项重点改革2009年度
综述了聚丙烯中空纤维膜的研究与开发状况 ,包括制备原理、过程、影响因素及应用开发状况。重点综述了聚丙烯中空纤维膜的制备及结构性能
小城镇是农业现代化的必由之路。推进小城镇建设是解决三农问题的重要途径。党的“十六大”、“十七大”、“十八大”都就小城镇问题进行了阐述。尤其是十八大更是明确提出:“
奶牛酮病是多发于围产后期的一种代谢性疾病。通常是因为奶牛产后进行大量泌乳和/或糖类等能量物质摄入不足所致的能量负平衡而无法有效缓解,促发本病。酮病因造成奶牛生产性
农民增收问题是全世界范围内的一个重大问题,而对我发展中的中国来说,这也是一个比较大的难题。能否持续、快速地通过农业政策增加农民收入,建立一条农民增收的长效机制,关系到国