论文部分内容阅读
两种不同密度的流体界面经激波瞬间加速后,获得一个有限的速度,界面原有的微小初始扰动得到发展放大,最终导致两种互不相溶的流体强烈混合的现象称为Richtmyer-Meshkov(RM)不稳定性。它在惯性约束热核聚变(ICF)、超新星动力学等领域都有着广泛的应用背景和重要的研究价值。本文应用矩形激波管与高速摄影仪对多相流体界面进行了实验研究。
本文实验在竖直的矩形激波管中进行,激波通过高压气体(氮气和氦气)击破不同厚度的铝膜获得,激波方向自上而下。实验中采用了两种多层流体界面,分别为“空气-硅油-水”界面和“空气-酒精-硅油”界面,实现了Atwood数在同一实验中从0到1的跨越。硅油与酒精分别用140蓝的乙酸乙酯溶液和蓝墨水进行染色,以期在用高速摄影仪拍摄时观察到清楚的界面。
本文在各种不同工况下进行实验后得出以下结论:高粘度流体会对界面发展起到阻碍作用,从而使得RM不稳定性后期的湍流混合现象无法或者推迟产生;Atwood数较小的界面比Atwood数较大的界面优先得到发展;本文实验中观察到的尖钉都为单模态结构,不同波长的气泡增长速度相近,没有出现大气泡吞并小气泡的现象;硅油层厚度也是影响RM不稳定性发展的因素之一,对于4~5mm厚度的油层,出现了失稳后油层与水介质分离、并被气流撕断的现象;当Atwood数为1时,气泡深度与时间的1次方成正比,当Atwood数为O时,气泡深度与时间的2次方成正比,尖钉高度与时间的1次方成正比,混合区宽度增长与时间成线性关系;当激波作用方向与粘度梯度方向(小—大)一致时,混合更加强烈。此外,本文还单独比较了“空气-硅油”界面与“空气-水”界面的RM不稳定性现象。