【摘 要】
:
GH2747是以Fe-Ni-Cr三元系为基体的沉淀强化型高温合金,因其优异的高温综合性能被广泛应用于航空航天等领域。选区激光熔化(SLM)技术作为一种重要的增材制造技术,在加工成形复杂高温合金零部件方面具有较大的优势。本文对GH2747合金SLM成形工艺进行了优化,成功制备出了成形质量良好的合金,对优化后的SLM成形合金的组织、力学性能展开了研究,并和标准轧制合金的组织性能作对比分析,最后研究了热
论文部分内容阅读
GH2747是以Fe-Ni-Cr三元系为基体的沉淀强化型高温合金,因其优异的高温综合性能被广泛应用于航空航天等领域。选区激光熔化(SLM)技术作为一种重要的增材制造技术,在加工成形复杂高温合金零部件方面具有较大的优势。本文对GH2747合金SLM成形工艺进行了优化,成功制备出了成形质量良好的合金,对优化后的SLM成形合金的组织、力学性能展开了研究,并和标准轧制合金的组织性能作对比分析,最后研究了热处理对SLM-GH2747合金的组织性能的影响规律。具体研究成果如下:(1)获得了SLM-GH2747优化后的工艺参数。当激光功率160 W、扫描间距0.07 mm、扫描速率900 mm/s时,成形件致密度较为良好,致密度高达99.68%。SLM成形GH2747合金块体致密度随着激光能量密度的增大呈现先增大后减小的趋势。激光能量密度较小时,合金试样主要缺陷为孔隙;激光能量密度过大时,试样主要缺陷为热裂纹。孔隙的形成和激光能量的输入密切相关,微裂纹的产生主要由残余热应力集中引起。(2)对优化工艺下成形的SLM-GH2747展开研究,并与标准轧制件进行了对比,突出了SLM成形件组织和性能的特征。研究发现,SLM-GH2747合金主要由基体相γ相以及γ′相组成,合金组织内含大量外延生长的柱状晶粒,晶粒内呈现等轴胞状亚结构或树枝状亚结构。SLM-GH2747合金室温力学性能较为良好,水平截面的平均硬度值为213.4HV,垂直截面平均硬度值为209.1HV,屈服强度为264.4 Mpa,抗拉强度高达731 Mpa,断裂延伸率为30.33%。在强度和硬度方面,SLM成形GH2747合金力学性能可以达到锻件水平,但塑性不如轧制合金。SLM-GH2747合金的1000℃高温拉伸强度高达82.2 Mpa,要高于标准轧制合金,然而其断裂延伸率仅有5.6%,高温塑性远低于轧制件。(3)参考轧制件的热处理工艺制度,研究了热处理对SLM-GH2747组织性能的影响规律。研究发现,固溶处理后的SLM试样熔池轨迹完全消失,晶界上析出链状碳化物;固溶+时效处理后的试样晶界上析出尺寸较均匀的块状碳化物,晶粒内部析出一定量的γ′强化相;直接时效试样激光熔池轨迹完全消失,晶界上析出尺寸相对固溶时效试样更大的块状碳化物,晶粒内部析出大量的粒状碳化物和一定量的γ′强化相。固溶处理能够有效提高SLM成形GH2747合金的室温塑性,使得试样的断后延伸率由30.33%提高到41.8%,抗拉强度降低了19.8Mpa;直接时效处理试样和固溶+时效处理试样使SLM-GH2747合金的室温拉伸强度从731.0 MPa分别提高到939.9 Mpa、915.2 Mpa,断后延伸率由30.33%分别降低到20.83%、23.33%。热处理后SLM试样的高温塑性没有明显变化,固溶处理后的试样高温拉伸强度几乎没有变化,而经过直接时效处理和固溶时效处理后的试样1000℃高温拉伸强度由82.2 MPa分别提高到96.2 MPa和93.9 MPa。
其他文献
轴承作为机器中的关键零件,在汽车、轮船、重型装备和航空航天等领域广泛运用,是机械部件转动不可或缺的零件。轴承中的流线组织分布对轴承的使用性能有重要影响。本课题研究了GCr15轴承钢中流线组织在成形制造过程中的演变特性及对机械性能的影响。首先对GCr15轴承钢热轧态流线组织进行了微观分析,揭示热轧态流线组织的形貌特征。对热轧态GCr15轴承钢进行球化退火处理,分析退火态GCr15轴承钢中流线组织的微
随着电力电子器件的小型化和集成化,不断提升的工作温度使其功率模块封装需经受更严苛的考验,亟需一种耐高温封装工艺。近年来,瞬时液相烧结连接技术(TLPS)凭借较低的连接温度和辅助压力,较高的强度和优异的耐高温性能,具有在电力电子封装应用的潜力。瞬时液相烧结连接选用熔点相差较大的金属粉末作为连接材料,在连接过程中低熔点金属(Sn和In)熔化并与高熔点金属(Au、Ag、Ni和Cu等)反应生成高熔点的金属
催化层是质子交换膜燃料电池(PEMFC)的核心器件。氢氧化反应(HOR)和氧还原反应(ORR)分别在阳极和阴极催化层中发生。因此,催化层的优化和电催化剂的设计对PEMFC起着至关重要的作用。PEMFC动态工况运行过程中出现的反极现象能在短时间内使电池的催化层结构造成致命的衰退,从而大大降低燃料电池的寿命,因此需要对反极过程中催化层的微观结构进行深入研究。而对于PEMFC催化剂而言,其目的是完全消除
随着人们对食品和药品等相关安全问题的日益关注,使用相变材料(PCM)的蓄冷技术已成为研究的热点。相变材料作为蓄冷技术的核心,可充当能量储存的中介,弥补能量供需在时间和空间上的差异,实现能量的充分利用。目前,低温相变材料的研究主要集中在用于空调和建筑等相变温度在0℃至室温的相变材料,而对于相变温度为0℃以下的冷链用相变材料尚存较大空缺。故本文针对微冻冷藏(0~-7℃)和轻度冷冻(-10~-18℃)两
快速准确的检测自然环境和生活用水中的硫酸根离子含量对于环境检测和人类身体健康都有着重要意义。硫酸根离子及其盐类作为肥料、添加剂等在人类农业、医药、建筑业和生活中发挥着重要作用,但是过高的硫酸根离子含量会导致许多问题,例如引起人体肠胃功能紊乱导致腹泻,土壤环境酸化和对混凝土结构的侵蚀劣化作用。因此,设计并制造一种硫酸根离子传感器,对环境中硫酸根离子进行快速、实时、稳定的检测是亟待研究的问题。随着传感
铜、铝异种金属的连接不仅可以实现接头轻量化,还能缓解储铜压力、解决铝的产能过剩问题,具有广阔的应用前景。然而,铝表面致密的氧化膜阻碍了铜铝间形成有效的连接,导致无法得到牢固的钎焊接头。结合半固态钎焊的优势和电磁成形的特点,课题组提出了磁脉冲辅助半固态无钎剂钎焊铜铝管的新工艺,以避免常规钎焊因使用钎剂而带来的气孔缺陷、接头耐腐蚀性下降等问题。半固态钎料的流变性能是分析钎焊过程、评估接头性能的重要依据
Si3N4/SiC被认为是一种优秀的复相陶瓷,可以具有许多优良的特性,如良好韧性,高温稳定性,耐磨性与耐腐蚀性等,但材料实际上硬度和韧性难以同时统一的问题仍限制着这种复合材料的广泛应用。为了更好的集成Si3N4、SiC各自优良的性能于Si3N4/SiC复合材料中,本论文提出梯度组成复合结构思路,探索了Si3N4/SiC梯度复合材料制备工艺和结构-性能关系,重点关注了梯度组成分布对复合材料结构和宏观
耐磨材料在人类社会的各行各业中都有着举足轻重的作用,在矿业、水电、机械等行业都有耐磨材料的身影。传统的耐磨件多采用金属材料制备,而且一直应用至今。近些年来,随着现代科技的发展,各种工业产能持续增加,机械零件的频繁更换给企业和环境带来了巨大的压力,传统的金属耐磨材料已逐渐无法满足工业需求。因此,具有优良性能的陶瓷颗粒增强铁基复合材料进入人们的视野,颗粒增强铁基复合材料具有高强度、高的刚度及高耐磨性,
氧化钨是一种较为理想的电致变色材料,被广泛应用于多彩色智能窗、汽车后视镜与电致变色开关等领域,但是目前仍然存在响应时间较长、颜色变化较单一等不足之处。鉴于这些问题,本课题以提高WO3电致变色切换时间和丰富电致变色的颜色切换为主要切入点,设计了一种等级孔结构WO3,拟通过等级孔薄膜中整齐有序的孔结构和大比表面积优化样品电致变色性能。本课题又进一步在等级孔结构WO3的基础上通过连续离子层吸附法引入了导
压电纤维复合材料(Macro Fiber Composite,MFC)是一种压电纤维与高分子聚合物交替平行排列并由叉指电极封装得到的多层复合材料,在航空航天、机械船舶等领域有着广泛的应用前景。MFC在封装与使役过程中,叉指电极与压电复合层之间以及MFC与主体结构之间都难以避免地引入一层封装层与粘结层,封装层和粘结层对MFC的电学性能与力学性能有着重要的影响。因此,本文研究了封装层与粘结层结构与性能