论文部分内容阅读
直接甲醇燃料电池(DMFC)因其绿色环保、燃料易得、操作安全、且具有优异的能量密度和高能量转换效率等优点,在便携式及可移动式设备上有广泛的应用前景。目前,DMFC中最常用的催化剂是商业Pt/C催化剂,然而Pt原子利用率较低和稳定性较差,亟需发展高效稳定催化剂的构筑方法以实现其规模化应用。基于此,本文采用自制的碳纳米管为载体,利用原子层沉积法制备系列不同粒径的Pt/CNT纳米催化剂,揭示了 Pt/CNT电催化甲醇氧化反应(MOR)结构敏感性的根源,辨认了催化剂的主要活性位,为高效稳定的Pt基MOR催化剂设计与优化提供指导。主要研究结果如下:(1)采用催化化学气相沉积法,以共沉淀法制备的环境友好型Fe/γ-A12O3为催化剂、甲烷为碳源,揭示了反应工艺参数对碳纳米管收率和微结构的调变规律。选取600和800℃条件下生长12 h的炭材料作为载体,并与硝酸氧化处理的炭载体(CNT-600-12-O和CNT-800-12-O)以及商业化炭黑进行对比,采用原子层沉积技术(ALD)制备系列碳纳米管负载的Pt纳米催化剂。结合催化剂结构表征和甲醇电催化氧化性能结果,发现采用CNT-600-12-O为载体制备的Pt催化剂表现出良好的MOR性能,这主要归因于更多的Pt催化剂活性位数量。(2)采用ALD制备系列粒径不同的Pt/CNT-600-12-O纳米催化剂,发现这些催化剂上甲醇电氧化过程存在显著的粒径效应,其中1.9 nm的Pt催化剂表现出最高的峰值电流密度67 mA·cm-2,该活性比20%商业Pt/C催化剂高3.2倍。进一步采用晶体原子结构模型计算的研究方法,揭示了该催化过程粒径效应的内因,辨识出Pt的角位为Pt电催化甲醇氧化反应的主要活性位,发现较低Pt电子结合能即富电子的Pt催化剂有利于MOR活性的提升。