【摘 要】
:
中心体在哺乳动物细胞内是主要的微管生成中心、并且在M期形成纺锤体的极点。在过去的几年中,不少Ser-Thr激酶被发现对中心体的结构和功能有着非常重要的作用。在这里,我们主要探讨四类蛋白激酶,Cdk2,polo-like kinase1(PLKl),NIMA-related kinases(Neks),和aurora-related kinases(AIRKS).
【机 构】
:
中国科学院研究生院(上海生命科学研究院)
【出 处】
:
中国科学院大学(中国科学院上海生命科学研究院)
论文部分内容阅读
中心体在哺乳动物细胞内是主要的微管生成中心、并且在M期形成纺锤体的极点。在过去的几年中,不少Ser-Thr激酶被发现对中心体的结构和功能有着非常重要的作用。在这里,我们主要探讨四类蛋白激酶,Cdk2,polo-like kinase1(PLKl),NIMA-related kinases(Neks),和aurora-related kinases(AIRKS).
其他文献
光学和纳米光子学研究的核心问题之一可归结为对光与物质相互作用物理机制的理解以及如何构建新颖的器件对光进行有效操控。人工微结构超材料作为一种新型的材料结构,通过对结构几何自由度的人工调控可实现对电磁波的定制化操控。超构表面,即二维的超材料,是由亚波长尺度的超构单元构成的人工微结构阵列。通过对超构单元电磁特性和空间排列序的有效人工构造,超构表面能以超薄、平面可集成的独特几何构型在亚波长空间尺度上实现对
红外成像具备探测距离远、隐蔽性高、可穿透烟雾以及全天候工作等优势,在光电探测领域受到了广泛的重视、研究和应用。在红外探测系统中,目标识别与检测能够为图像中的潜在目标提供类别判断和坐标定位,是后续跟踪任务的基础,也是后续决策系统的有力支撑。近年来,随着计算能力和大数据的推进,深度学习模型已经在计算机视觉领域取得了异常瞩目的进展,在很多大型数据集上,一些算法的认知水平甚至超过了人类的分辨能力。然而,这
无人机遥感是一种新兴的监测技术,由于其成本低、高效方便、能在云层下低空飞行的优点,无人机遥感已经广泛应用于各个领域。无人机成像系统中,与线阵载荷相比,面阵载荷获取的图像具有相对稳定的内部几何关系,而面阵摆扫型成像方式更因其具有总视场角大、观测范围宽、瞬间凝视成像等优点,在航空军事侦察、应急救灾和倾斜摄影测量等领域具有其独有的优势,成为当前国内外较为关注的一类新型遥感载荷,现阶段针对此类数据预处理关
当今气象卫星通过测量大气温湿轮廓线,获取大气温度和湿度垂直信息,提高了天气预报准确性。星载红外傅里叶光谱仪具备高光谱分辨率探测和大气垂直探测能力,能够准确地获得大气温湿轮廓线,是目前气象领域的研究热点之一。第17届世界气象大会上,世界气象组织委员会确定了全球综合观测系统2040年远景发展计划,在高分辨率区域数值天气预报及有效地指导超短期预报上提出了进一步要求,例如实时地监测台风和强对流系统的强度和
红外光电探测技术发展至今已有近九十年历史。当前,红外探测系统的发展方向是更小尺寸(Size)、更低重量(Weight)、更小功耗(Power)、更低价格(Price)和更高性能(Performance),常被称为SWAP3。在这个背景下,新一代高灵敏度红外雪崩光电探测器和高工作温度红外光电探测器迎来快速发展。HgCdTe材料具有极高的光电转化效率、载流子输运特性好、响应范围随组分可调等优势,更为重
作为光的基本属性之一,偏振能够提供有别于辐射强度的另一种关于物体的信息,由于不同物体或同一物体的不同状态在发射或反射红外辐射时均可能产生不同的偏振状态,因此通过对红外成像场景中偏振信号的探测,能够提高图像对比度,增强系统对目标探测与识别的能力。同时,随着InGaAs探测器制备技术和微纳加工技术的不断进步,使采用片上集成工艺制作分焦平面结构的近红外偏振探测器成为了可能。本文结合近红外焦平面探测器集成
近十年来,二维材料由于其独特的物性优势,如原子级厚度(电子态易于调控)、层间范德瓦尔斯力(异质结界面无晶格失配)和丰富的电子能带(覆盖整个电磁波谱)等,被不断深入地研究,已在下一代纳米电子和光电子领域展现出巨大的潜力与应用前景。稳定的过渡金属硫族化合物作为二维材料的典型代表,具有带隙可调、较大的光吸收系数和各向异性等特点,为实现具有宽波段响应、高带宽和偏振敏感的光电探测器提供一条可行的技术路线。然
深空探测和红外天文技术需要高性能的长波红外探测器,而我国在这方面相对落后。阻挡杂质带(Blocked Impurity Band,BIB)探测器具有响应波段宽、响应率高、响应速度快、易于大规模制备及方便读出等优点,成为过去三十年天文探测覆盖中红外和远红外波段的首选红外探测器。硅基BIB探测器具有与CMOS工艺兼容,易于大规模制备和方便与读出电路互连等突出优点,尤其受到重视。目前硅基的BIB探测器国
太赫兹技术是一个极具吸引力的研究领域,在半导体、医疗、制造、太空和国防工业等各个领域都有很大的潜力。太赫兹学科研究通常涉及到光电子学、半导体物理学、材料学等多个学科。在太赫兹技术的多种应用中,太赫兹探测器是关键的环节。本论文主要研究了几种基于有潜力的材料体系的太赫兹器件,结合材料的生长、理论计算、器件制造以及光电测试,研究了基于硒化锡和碲化钯材料的红外太赫兹探测。以材料的表征与研究为基础,设计了不
提高光电型窄禁带半导体红外探测器的工作温度是当今红外技术发展的一个重要趋势,Ⅲ-Ⅴ族InAs基半导体材料是制备高工作温度红外探测器的潜力材料。液相外延是一种近平衡态的材料生长方法,很适合生长器件级质量的InAs基材料。我们采用液相外延技术生长了InAs0.94Sb0.06和InAs0.89Sb0.11两种吸收层材料,对应的室温截止波长分别为3.9μm和4.4μm。采用液相外延技术生长了InAs1-