【摘 要】
:
近年来,移动网络流量的激增给移动网络运营商带来极大的挑战,也导致用户体验降低。D2D(Device-to-Device)技术是一种基于设备直连的面对面内容传输技术,可以缓解流量激增问题。我们可以在D2D社区中选择有影响力的种子用户,促进线下内容的传播,卸载网络流量,提高D2D软件的活跃度。然而,目前的一些种子用户选择算法产生影响力重叠的问题。种子用户选择是一个持续的过程,在传统的集中式云计算模式下
论文部分内容阅读
近年来,移动网络流量的激增给移动网络运营商带来极大的挑战,也导致用户体验降低。D2D(Device-to-Device)技术是一种基于设备直连的面对面内容传输技术,可以缓解流量激增问题。我们可以在D2D社区中选择有影响力的种子用户,促进线下内容的传播,卸载网络流量,提高D2D软件的活跃度。然而,目前的一些种子用户选择算法产生影响力重叠的问题。种子用户选择是一个持续的过程,在传统的集中式云计算模式下,大量的用户数据传输至云数据中心计算,不仅增加了回程链路的负载,提高了时延,还降低了用户隐私数据的安全性。集中式云计算无法满足运营商、D2D软件发行商和D2D用户对降低网络负载、提高种子挖掘效率和降低数据风险的需求。因此,我们建立了一个多社区影响力最大化模型,并将该问题转化为两个子问题:(1)单社区种子用户选择问题和(2)多社区种子用户分配问题,然后提出了一个通用的算法框架,并提出一种基于强化学习的种子用户分配算法。为降低回程网络负载,缩短种子用户更新周期,提高用户数据安全性,我们将本文提出的多社区种子用户选择算法部署在一个边云协同计算模式下,将部分计算任务从云数据中心迁移到距离用户更近的基站。实验部分,我们使用一个D2D数据集和一个线上社交网络数据集。实验结果表明,本文提出的SUA算法比CIM算法和CoFIM算法达到更高的传播覆盖率,比启发式的平均分配算法提高17.65%的传播覆盖率。本文提出的方法可以将蜂窝网络流量减少26.35%。同时,本文设计的边云协同计算方式相对于集中式云计算方式,时延降低63.53%。
其他文献
肝性脑病(Hepatic encephalopathy,HE)是一种严重肝硬化引起的认知功能异常并发症,一年内死亡率很高。轻微肝性脑病(Mild hepatic encephalopathy,MHE)转换为肝性脑病的概率非常高,因此准确地从无肝性脑病的肝硬化(no Hepatic encephalopathy,no HE)患者中准确识别轻微肝性脑病,对降低肝性脑病死亡率具有重要意义。过去的研究中,
在移动通信技术不断升级的背景下,虚拟现实和智能手环等智能终端逐渐走进了人们的日常生活。由于架构的集中性,移动网络已经无法承载海量数据的传输业务。边缘缓存技术被业界普遍认为是一种有效的解决方案,它通过在网络的边缘存储和转发部分流行内容来减少网内和网间的流量,在优化网络资源的同时缩短了请求的响应时延。然而,相关研究工作主要集中在基站,却忽略了计算和存储能力均日益增长的移动终端在边缘缓存架构中的潜力。移
随着信息技术和互联网的发展,人们逐渐从信息匮乏的时代走入了信息过载的时代。如何在大量信息中发现有用的并让其为人类更好的服务是一个问题。推荐系统就是解决这一问题的重要工具,其任务就是联系用户和信息,使得两者有更好的交互。但是由于人们的隐私安全性意识逐渐增强,很多情况下用户的身份信息是不能够公开的,因此作为专为匿名用户打造的会话推荐系统成为推荐系统领域的热点。它旨在通过一系列匿名会话更有效地预测用户的
实际应用中的数据往往都有多种形式,比如不同的模态、来源和特征,多视图的信息分别用来描述某个事物不同的方面,如果只使用一个视图的信息,分析将缺乏全面性,如果可以同时利用多个视图的信息,将会有效的加强数据分析的效果。多视图聚类已经成为了计算机视觉和机器学习领域的一个重要研究课题,它的目标是得到一个多视图一致的划分结果。但是目前的多视图数据仍然存在两个主要挑战:一方面,数据的多个视图之间有复杂的非线性关
随着无人机飞控技术和计算机视觉技术的飞速发展,两者结合的无人机视觉技术逐渐成为新的研究热点。如今无人机视觉技术已经广泛应用于野生动物保护、智慧城市管理、自然灾害检测以及交通流量监控等领域。在野生动物保护领域,无人机视觉平台可以提供远大于地面摄像头的监控范围,减少了人力物力;在自然灾害检测领域,无人机视觉平台移动方便,可以提供自然灾害的最新讯息,可以及时发现隐患并提供预警。无人机目标计数旨在得出图像
推特和新浪微博等社会媒体平台的繁荣,产生了大量有噪声的短文本。社交媒体话题检测旨在为海量的社会媒体数据建模潜在的语义结构,其揭示的主题信息可用于短文本分类、关键词生成、篇章关系识别等下游应用。目前,面向社会媒体的短文本话题检测方法大致分为基于跨文档共现模式、基于文本语义信息以及整合内容和社交上下文三类。然而,已有方法均忽略社交网络的异构性和多元性以及大范围的用户邻域上下文对话题检测的影响。本文从编
近些年来,关于三维人脸的研究逐渐得到了研究人员们的关注。其中,三维人脸的表征学习是指利用模型得到人脸信息在计算机中的语义表征,从而驱动下游丰富的三维任务,所以三维人脸表征学习具有重要的意义。由于人脸中包含非线性的形变特征,传统的方法基于线性子空间或者高阶张量来刻画人脸表征,由于线性的局限性,得到的表征空间无法刻画极度形变的情况,造成表征能力和扩展性较差。而基于深度学习的三维重建任务可以得到表示能力
数据需求的快速增长、物联网设备的海量接入以及新应用场景的不断涌现,对移动通信网络提出了更高的要求。作为新一代移动通信网络,5G提出并应用了许多前沿理论和技术。其中,设备到设备(D2D)通信技术可以有效缓解通信系统核心网的数据压力并且优化用户服务感知。但是,由于无线信道的开放性,D2D通信存在着隐私泄露、数据篡改等多种安全问题。特别是在身份认证方面,传统的解决方案可能会带来严峻的安全挑战。因此,本论
模式识别是人脑强大认知能力的体现之一。尽管有各种各样的模式识别技术被提出来模拟生物体杰出的认知能力,然而与生物体高效的运作方式相比,这些方法无论是在生物可信度还是识别准确率方面都还有很大的差距。研究表明,生物体使用二值形式的离散脉冲来进行信息传递和处理。受此启发,脉冲神经网络被提出来,用以研究基于脉冲的认知机理及计算特性。然而,设计一个基于脉冲神经网络的高效且生物置信度高的图像识别框架仍存在较大挑
在计算机图形学领域中,流体模拟一直是热门的研究方向之一。传统的流体模拟通过求解物理方程实现,这类方法能够得到非常真实的效果,但是往往会受到计算资源的限制。随着深度学习技术的不断发展,将流体模拟与基于数据驱动的方法相结合成为了一种新的研究趋势。本文在深度学习算法的基础上,针对超分辨率流体中存在的问题进行了研究。本文基于生成对抗网络(GAN)提出了帧间插值的算法,来增强超分辨率流体的时序一致性。使用G