【摘 要】
:
BaTiO3基PTC热敏陶瓷是一类关键的电子功能材料,它在加热元件、电路保护器、传感器等方面有广泛的应用,而且在计算机、远程通讯、卫星导航等领域中也十分常见。然而工业生产中高居里点PTC热敏材料通常含铅,随着人们环保意识的提高,研究Ba Ti O3基无铅PTC热敏材料一直是一项急需解决的重要课题。实验采用固相法和溶胶凝胶法制备BaTiO3基PTC热敏陶瓷,以Bi0.5Na0.5TiO3(BNT)和
论文部分内容阅读
BaTiO3基PTC热敏陶瓷是一类关键的电子功能材料,它在加热元件、电路保护器、传感器等方面有广泛的应用,而且在计算机、远程通讯、卫星导航等领域中也十分常见。然而工业生产中高居里点PTC热敏材料通常含铅,随着人们环保意识的提高,研究Ba Ti O3基无铅PTC热敏材料一直是一项急需解决的重要课题。实验采用固相法和溶胶凝胶法制备BaTiO3基PTC热敏陶瓷,以Bi0.5Na0.5TiO3(BNT)和Bi0.5Li0.5TiO3(BLT)作为居里温度移峰剂,Y3+和La3+作为施主杂质,Mn2+和Co2+作为受主杂质,Si O2作为烧结助剂,通过TG-DTA、XRD、SEM和阻温特性测试,研究了配方组成和制备工艺对BT-BNT、BT-BLT基PTC热敏陶瓷性能的影响。固相法制备的BT-BNT、BT-BLT基PTC热敏陶瓷研究发现:BNT和BLT的居里温度移动率高达18℃/mol%左右,远高于传统铅掺杂的居里温度移动率(3.7℃/mol%);但是BNT和BLT的引入量对试样的室温电阻率影响很大,当BNT和BLT的引入量不超过1 mol%时,PTC热敏陶瓷能够获得较低的电阻率(ρ<100Ω·cm)和较好的PTC效应(lg(ρmax/ρmin)﹥3),但当BNT和BLT的引入量达到1.5 mol%后,试样的电阻率就会高达10~6Ω·cm以上,不能满足使用要求,这是因为Na+和Li+在陶瓷冷却过程中富集在晶界上,形成富Na+和富Li+绝缘层,降低了载流子迁移率,使陶瓷电阻率增大。受主Mn掺杂会提高试样的PTC效应(lg(ρmax/ρmin)﹥5),这是因为Mn的引入会使陶瓷晶界势垒增高,进而提高了PTC效应。适量Si O2的掺入有利于陶瓷致密化,而且会进一步提高陶瓷的升阻比,当Si O2掺入0.6 wt%时,BT-1%BLT-0.04%Mn基PTC热敏陶瓷升阻比高达6.532。溶胶凝胶法制备的BT-BNT基PTC热敏陶瓷研究发现:与固相法相比,溶胶凝胶法制备的BaTiO3陶瓷晶粒尺寸更均匀而且活性更高,诱使当BNT引入量为4mol%时PTC热敏陶瓷仍能半导化(固相法仅能固溶1 mol%的BNT)。Co作为受主引入后会阻碍BT-2%BNT陶瓷晶粒长大,适量Co掺杂提高了陶瓷的PTC效应,当Co的掺杂量为0.12 mol%时,相比于未掺杂Co时升阻比提高了1.3个数量级。图55幅;表16个;参83篇。
其他文献
YAG透明陶瓷具有良好的光学性能、力学性能以及热学性能,被广泛的用于透明装甲与光电窗口等领域,掺杂稀土离子后是常用的激光增益介质材料。为了满足激光输出的应用,实现大尺寸、高均匀性的YAG透明陶瓷制备,研究内容如下:研究了自发凝固成型过程中有机物和固含量对浆料性能的影响,IB600添加量为0.55 wt%、IB104添加量为0.25 wt%时,浆料具有良好的性能;浆料的固含量从76 wt%提升至81
针对传统熔盐电解法采用TiO2或者Ti Cl4为原料制备金属钛及钛合金的缺点,论文研究了以来源广泛的CaTiO3为原料,采用熔盐电解法制备金属钛及钛合金的过程,主要内容如下:首先,对氯化物熔盐中不同电解时间的CaTiO3固态阴极进行分析可知,CaTiO3固态阴极的还原历程为:CaTiO3→Ti2O3→TiO、Ti2O→Ti[O]б→Ti。为提高CaTiO3阴极的脱氧速度,对比了阴极烧结温度、孔隙度
降解某种单一染料或抗生素的光催化剂在实际应用中往往受到诸多限制,因此,迫切需要能够降解多种污染物的催化剂。Ag3PO4作为半导体光催化剂的一种,其降解染料等单一污染物的性能优异。但Ag3PO4在光催化反应过程中极易发生光腐蚀,且无法完全降解苯酚和抗生素等污染物。共轭聚合物(Conjugated polymers,CPs)作为一种传统的光电材料,广泛应用于各种光电材料。共轭聚合物中存在的π电子结构,
医学教育的第一任务是培养优质的医疗卫生工作者,其本质是辅助科学研究的成果应用于临床工作。因此,临床医学教育应当遵循“以科学研究为本,以临床工作为目标”的指导框架。教学、临床与科研是当代医学生职业发展中最重要的三大方向。如何顺应社会对医生综合能力的需求,将教学、临床与科研有机结合并实现一体化为医学生的综合成长提供最合适的教育方法是目前亟待解决的问题以及难点。文章将首次提出医教研(医疗、教学、科研)一
石膏是常用的气硬性胶凝材料,具有环保节能和轻质保温等优点,成为广泛应用的建筑材料。石膏材料强度低和韧性差的缺点,限制其应用领域的拓展,开展石膏材料增强增韧研究十分必要。为获得高强和高韧性的石膏材料,主要开展聚乙二醇(PEG)、硫铝酸盐水泥(SAC)和聚丙烯(PP)纤维等对建筑石膏材料的增强增韧研究;PP和表面改性PP纤维对SAC增强石膏(SAC-石膏)材料的进一步增强增韧研究;聚乙烯醇(PVA)对
钙钛矿自被发现以来就被人们认为具备巨大的发展潜力。由钙钛矿制备的光电器件受限于钙钛矿的不稳定性容易遭到水和氧气的侵蚀。尺寸的减小和有机长链的引入形成的二维(2D)钙钛矿赋予了钙钛矿新的结构和性能。2D钙钛矿出色的稳定性使得人们逐渐将注意力集中在2D钙钛矿的研发上。2D钙钛矿作为一种新兴的高稳定性半导体材料,在光电领域有很多应用。引入正丙胺(PA)长链有机阳离子,使用梯度降温法和恒温蒸发法制备出了无
随着计算机技术的发展,目标跟踪问题越来越成为计算机视觉领域中的热点问题,是后续进行其他处理操作的基础。在大多数目标跟踪场景下,各种状况的出现都会让很多跟踪算法面临极大挑战。目前,跟踪算法中相关滤波算法速度非常快,但准确度不高。深度学习算法的准确度高,但是实时性还是达不到要求。因此,研究目标跟踪算法仍然非常重要。针对目标跟踪过程中出现的背景混乱、目标快速运动、目标发生形变等挑战,文章致力于研究面向目
锂离子电池作为有效的储能系统备受重视。在锂电负极材料限制整体性能的现状下,利用具有新型多孔结构的有机金属框架材料(MOFs)衍生物作为锂电负极材料,表现出优异的储锂性能。通过溶剂热法和室温共沉淀法分别制备Co-MOF和ZIF-67前驱体,分别探究了原料摩尔比、热处理方式及温度对这两种MOFs衍生复合材料的影响。其中Co-MOF前驱体又通过复合氧化石墨烯(GO)和多壁碳纳米管(MWCNTs)来提升衍
将钛铁矿尾矿作为粗骨料制备混凝土,不仅能促进钛铁矿尾矿综合利用,还能降低混凝土成本。以FeTiO3纯试剂和钛铁矿石为研究对象,研究二者在混凝土中的化学稳定性,以期为钛铁矿尾矿在混凝土中的安全应用提供理论依据。1)通过热力学理论计算,分析了FeTiO3在混凝土液相环境中可能发生的反应。计算结果表明,FeTiO3在有O2的模拟混凝土孔溶液中,有自发向Fe3O4、Ti O2(金红石)和Ca Ti O3转
社会主义核心价值观是精神文明建设的主线和灵魂,为社会主义精神文明建设指明了道路和发展方向,我们要自觉以社会主义核心价值观引领精神文明建设。本文从社会主义核心价值观引领精神文明建设的切入点入手,分析社会主义核心价值观引领精神文明建设的举措,以期为实现百年中国梦提供精神支持。