论文部分内容阅读
斑图动力学主要研究的是当系统远离热力学平衡态时,其时空有序结构的形成机制及演化规律.分支理论是研究偏微分方程系统斑图形成的重要工具.近几年,斑图动力学的研究主要集中于系统在高余维分支及高级分支附近的动力学行为.本文将以种群模型为背景,利用中心流形定理、规范型方法及隐函数定理等基本理论,研究系统的空间齐次稳态解经由Turing-Hopf分支及空间非齐次稳态解经由Hopf分支所产生的时空斑图.本文的主要研究内容为:1.基于T.Faria等人提出的抽象的规范型理论,对一类具有一般形式且带有离散时滞的反应扩散方程,给出其Turing-Hopf分支规范型的具体计算公式,该公式中的各项系数均可由原方程系数显式表达.通过分析三阶截断规范型并结合中心流形收敛定理,得到系统在Turing-Hopf分支附近可能存在的时空吸引子,它们分别为空间齐次稳态解、空间非齐次稳态解、空间齐次周期解、空间非齐次周期解及空间非齐次拟周期解.从理论上证明了Turing-Hopf分支可以导致时空有序结构的产生.2.研究一类Holling-Tanner捕食食饵模型的分支问题.通过选取空间长度l和捕食者与食饵的出生比率为参数,建立多种分支的存在性条件.运用规范型方法,得到Holling-Tanner模型在Turing-Hopf分支值附近的三阶截断规范型.通过分析相应振幅系统的VIIa型开折,揭示原系统在Turing-Hopf分支附近存在的动力学现象,如一对稳定的空间非齐次周期解共存,一对稳定的空间非齐次拟周期共存及一个稳定的空间齐次稳态解与一对稳定的空间非齐次拟周期解共存.3.研究一类具有时滞的Holling-Tanner捕食食饵模型的分支问题.其中,时滞反应了由于种内竞争所导致的滞后现象.考虑时滞对系统的影响,给出系统多种高余维分支的存在性条件.借助规范型方法并通过讨论相应振幅系统的IVa型开折,得到系统在Turing-Hopf分支附近所展现的多种动力学行为,如两个稳定的空间非齐次稳态解在某些参数区域内共存,而由于时滞的作用,这两个空间非齐次稳态解经由Hopf分支失去稳定性并最终导致两个稳定的空间非齐次周期解产生.4.研究一类基于记忆扩散且具有非局部时滞的单种群模型.运用LyapunovSchimidt约化,给出空间非齐次正稳态解的存在性条件.利用先验估计、隐函数定理及处理双时滞特征值问题的几何方法,讨论系统在该正稳态解处的特征方程.该特征方程为一类具有两个时滞的偏微分方程,通过分析其零实部特征值的存在性条件,得到正稳态解的局部稳定性条件和系统在正稳态解处发生Hopf分支的参数条件.