介孔碳/二氧化钛用于锂硫电池及其电化学性能研究

来源 :武汉理工大学 | 被引量 : 0次 | 上传用户:wudi120
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
锂硫电池(LSBs)是如今前景可观的可充电电池体系之一。它之所以为人们关注,是因为它具有非常高的理论能量密度,高理论比容量的优点。并且硫在自然界的储量丰富,无毒。但是由于硫及其反应的最终产物Li2S是绝缘体导致硫阴极导电性差,并且过程中多硫化物Li2Sn(4≤n≤6)会溶解于电解液中并扩散到阳极与锂金属发生反应生成Li2S并沉淀于阳极,导致电池的库伦效率低、自放电严重以及快速地容量衰减,反应过程中会有严重的体积膨胀问题,制约了锂硫电池的进一步发展。本文主要将采用价格低廉环境友好的二氧化钛和碳及其复合材料通过结构的设计作为硫单质的载体材料,以抑制锂硫电池中最棘手的问题——穿梭效应。并且提高复合阴极的导电性,通过SEM、XRD、等手段对复合材料表征,并测试了材料的EIS图谱,CV曲线等。具体如下。(1)本文通过简单的水热法以十六胺为诱导剂,利用钛酸异丙酯的水解,合成了纳米二氧化钛聚集的介孔二氧化钛微球(PTiO2)。以二氧化钛为硫阴极是利用二氧化钛多硫化物有较强的亲和力,能够将大部分活性物质限制在阴极一侧,达到抑制穿梭效应的效果。介孔可以提高电极的比表面积,增大反应面积增强反应活性,而且介孔也可以对多硫化物起到物理限域的作用。对材料进行表征再组装为扣式电池对其进行了电化学测试,并与纯硫制备的阴极对比,结果PTiO2/S阴极显示出较好的循环性能。(2)二氧化钛虽然能够吸附溶液中多硫化物,但是导电性较差抑制了电极反应动力学。为了改善TiO2/S阴极的导电性我们选择用介孔碳搭载二氧化钛颗粒。本论文利用水热法,以氢氧化钙和聚丙烯酸的高温分解生成的孔和碳骨架,合成了介孔碳(MC)。将MC与纳米二氧化钛进行复合得到了MC-TiO2复合材料。进行了电化学测试,MC-TiO2显示出较好的电化学性能。一方面得益于介孔碳对多硫化物的起到了限域作用并且有利于电子的传输,另一方面由于TiO2是一种极性材料对多硫化物有良好亲和性,从而抑制了穿梭效应。
其他文献
有机/无机柔性压电复合材料兼具了优异的机械柔性与高压电性能,可为柔性可穿戴器件、生物传感器等无源器件提供电力能源输出。以零维无机压电陶瓷粒子为压电功能材料的传统有机/无机压电复合材料存在应力与电荷传递效率低的挑战,继而会对材料的压电性能输出产生影响。为了提高材料的应力传递效率以及电荷迁移速率,本文制备了在空间具有3D网络分布的无机压电纤维毡,并且在无机压电纤维中嵌入导电的碳纳米管CNTs以增加其导
学位
碳化物陶瓷因其具备良好的力学性能,目前已经广泛应用于工业设计和制造中。值得注意的是,从MAX陶瓷相剥离出来的二维过渡金属碳化物(MXene)因其具有卓越的机械,摩擦方面性质引起研究学者的积极探索。碳化物陶瓷材料以及由碳化物陶瓷材料衍生发展而来的二维过渡金属碳化物材料还有很多性质未被研究,通过第一性原理计算,有助于更深入理解这类材料的物理化学性质,并有助于对后续实验设计提供理论指导。本文研究中,我们
学位
环氧片状模塑料(ESMC)是在以不饱和树脂为基体的片状模塑料(SMC)的基础上创新研究出来的一种新型的模压料,环氧片状模塑料复合材料具有优异的电绝缘性、耐热性、阻燃性以及机械强度,其机械性能可以与金属材料相比肩,因而广泛应用于汽车行业。目前汽车的轻量化成为大势所趋,所以环氧片状模塑料复合材料的密度是制约其发展的关键因素。因此对环氧片状模塑料的填料进行深入的实验研究十分迫切,研究制备适合密度以及力学
学位
单一材料对组织缺损修复难以达到理想的效果,常常需要多种材料复合使用来提高效果。例如,亲水性材料如海藻酸钠(SA),丝素蛋白(SF)等亲水性植入物可以促进伤口愈合,促进干细胞募集和组织再生。虽然其生物相容性良好,但是在实际应用时容易遇水溶解无法维持其应有的形貌与功能。部分疏水性材料可以避免这一点并且拥有较好的力学性能,如聚乳酸(PLA),聚氨酯(PUR),聚已内酯(PCL)等。但是疏水性材料不利于细
学位
利用简单、经济的方法制备合成重量轻、厚度薄、频带宽、吸收强的高性能吸波材料是一项极具挑战性的课题。基于磁-碳复合材料兼有高导电性和磁性,即具有高的介电损耗和磁损耗的基础上,本文将等级孔结构引入到磁及磁-碳复合材料中进一步优化材料的结构和性能。该等级孔磁和磁-碳复合材料不仅可以大幅度改善材料的阻抗匹配特性,丰富电磁波衰减机制,提高材料内部的微波衰减能力,同时可以大幅度降低吸波材料的密度。本论文利用廉
学位
玻璃制品在我们日常生活中已成为不可缺少的一部分,同时由于具有良好的化学稳定性且无毒无害,在处理高放废料方面也有着广泛地应用。诸多科学家和研究学者们,为了研究硼硅酸盐的腐蚀行为及机理,提出了一种国际简易玻璃(International Simple Glass,ISG)。对玻璃化学稳定性的评估,通常采用的是美国试验学会提出的(Product Consistency Test,PCT)方法,然而该测试
学位
铅基卤素钙钛矿量子点具有比表面积大、载流子扩散距离长、带隙可调节等特性,具有优异的光催化性能,在光催化领域有着广泛的应用。然而,铅基卤素钙钛矿量子点存在晶体结构稳定性较差和铅毒性两大问题,这阻碍了其在光催化领域的进一步发展。因此,有必要开发新型无铅钙钛矿量子点以解决以上问题,从而推动钙钛矿量子点在光催化领域的发展。作为一种新型的无铅双钙钛矿量子点,Cs2AgInCl6量子点(CAIC QDs)具有
学位
表面等离子体共振(SPR)传感技术具有实时监测、无需标记样品、灵敏度高、响应快、免受电磁干扰等特点,是一种重要的生物传感技术。尿酸敏感膜(UASM)是SPR尿酸传感器的核心部件,其光学性能、吸附性能、力学性能直接影响传感器的灵敏度、检测范围、响应时间等重要参数。为制备具有性能优异的尿酸敏感膜,需要选择合适的敏感物质、固定材料、基体材料以及设计合理的工艺方案。本论文主要研究利用化学交联法将尿酸酶(U
学位
表面增强拉曼散射光谱(Surface-Enhanced Raman Scattering,SERS)与光纤结合制备出的SERS光纤探针在检测领域具有巨大的应用潜力。近些年随着纳米合成工艺的发展,形貌为多分支状的金银合金纳米粒子被合成出来。因金银合金纳米星优异的SERS性能而吸引了相关研究者的关注。将金银合金纳米星与光纤进行组装非常有希望制备出高性能的SERS光纤探针。本文围绕着实现三种粒径形貌金银
学位
聚合物改性沥青以其优良的高低温性能已被广泛应用于防水领域。然而,受热和紫外光的影响导致屋面防水材料性能劣化,会大大缩短防水层的服役寿命。目前,关于聚合物改性沥青防水卷材热老化和光热耦合老化研究还较少,因此,研究不同种类聚合物改性沥青防水卷材的老化性能,对于提高聚合物改性沥青防水卷材的抗老化能力,延长其服役寿命具有重要的指导意义。本文采用苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、胶粉为改性剂,有机
学位