【摘 要】
:
湍流射流点火(TJI)发动机可通过在预燃室内点火并喷射射流实现主燃烧室多点点火,从而大幅提升发动机燃烧速率及燃烧稳定性。本文基于一台单缸试验发动机首先开展了湍流射流点火(TJI)对发动机性能,燃烧影响的初步探索。其次开展了高压缩比对TJI发动机性能及燃烧特性影响的试验研究,最后开展了高压缩比稀燃条件下TJI发动机负荷拓展及性能优化的试验研究,此外着重探讨了TJI发动机压力震荡特性及其与SI发动机爆
论文部分内容阅读
湍流射流点火(TJI)发动机可通过在预燃室内点火并喷射射流实现主燃烧室多点点火,从而大幅提升发动机燃烧速率及燃烧稳定性。本文基于一台单缸试验发动机首先开展了湍流射流点火(TJI)对发动机性能,燃烧影响的初步探索。其次开展了高压缩比对TJI发动机性能及燃烧特性影响的试验研究,最后开展了高压缩比稀燃条件下TJI发动机负荷拓展及性能优化的试验研究,此外着重探讨了TJI发动机压力震荡特性及其与SI发动机爆震现象的异同。首先本文开展了湍流射流点火(TJI)对发动机性能,燃烧以及压力震荡特性的影响研究。试验结果表明,TJI发动机可稳定工作在稀燃工况。稀燃工况下指示燃油消耗率可降低至227 g/k Wh,相比当量比1工况降低约4.22%。SI发动机稀燃工况油耗水平与TJI发动机接近,但TJI发动机的燃烧稳定性更佳。同时稀燃工况下氮氧化物排放显著下降。此外随着过量空气系数的升高,TJI发动机的滞燃期无明显变化,但燃烧持续期增长。压力震荡方面,TJI发动机射流会使得放热率骤增,同时也会在缸内引发压力震荡。该压力震荡的幅值基本与放热率峰值成正相关。增大点火提前角会增强射流与火焰锋面对末端混合气的压缩作用,继而会诱导末端混合气自燃。接下来本文开展了压缩比对TJI发动机性能和燃烧特性的影响研究。试验结果表明,提高压缩比会显著提升发动机放热率峰值,加快缸内燃烧速率。同时指示燃油消耗率明显降低。但压缩比提升后发动机更容易诱发末端混合气自燃甚至早燃,因此高压缩比条件下TJI发动机应向稀燃工况方向拓展,但稀燃会使得发动机动力性下降。因此为恢复发动机动力性并进一步优化发动机性能,本文开展了高压缩比稀燃条件下TJI发动机负荷拓展与性能优化研究。结果表明通过进气增压技术,TJI发动机稀燃工况IMEP上限可提升约20%。大负荷工况下最佳指示燃油消耗率可降低至204 g/k Wh。小负荷工况下指示燃油消耗率、一氧化碳与碳氢化合物排放显著降低。此外与当量比1运行的SI发动机相比在大负荷工况下指示燃油消耗率可降低约13%,小负荷工况下可降低约6%。一氧化碳比排放可降低约60%。氮氧化物比排放随负荷增加降低比例增加,最高可下降约93%。
其他文献
随着制造业领域对加工精度、灵活性以及可编程化的要求不断提高,工业机器人应时而起。传统机器人通常为串联机构,这种轻质构型虽然灵活程度高但刚度较低、承载能力不强,很难适用于接触力较大的加工领域。在这种背景下,混联机器人因其具有较高的刚度和较强的承载能力脱颖而出。但对于诸如搅拌摩擦焊接等接触力过大的加工环境,混联机器人虽不导致机构损坏但其变形也会影响到定位精度和加工质量。因此,本文以TriMule混联机
钛合金因其具有优异的综合力学性能,例如硬度高、耐腐蚀和热稳定性好等,被广泛应用于航空和航天领域。但钛合金的摩擦磨损性能较差,在滑动工况中容易发生磨损失效。液压作动筒是飞机上的关键驱动装置,TC4钛合金作为作动筒的主要材料,其表面质量及耐磨性是实现作动筒长寿命的关键。针对西安航空自控所对飞机液压作动筒提出的长寿命需求,首次提出使用超声冲击技术解决问题的思路。本文以TC4钛合金为研究对象,探究超声冲击
论文提出了一种线接触螺旋锥齿轮副成形原理及其加工方法——螺旋半展成法,阐述了螺旋半展成法加工共轭齿面的成形原理。基于数控机床建立了切齿运动模型和相应的齿面求解模型,辅以数值仿真、有限元接触仿真、虚拟加工仿真、数控加工试验与滚动检验,实现了线接触渐缩齿螺旋锥齿轮的设计与加工。主要研究内容及成果如下:(1)基于齿轮啮合基本原理,阐述了齿轮副共轭啮合齿面上某点处的相对运动是该点绕瞬时轴的螺旋运动。分析了
内燃机节能研究对国家能源安全和低碳环保意义重大。在内燃机各项节能技术中,余热能利用具有最大的节能潜力。其中,有机朗肯循环(Organic Rankine Cycle,ORC)因具有热效率高、结构简单、可靠性强等诸多优势被广泛应用于内燃机中低品位余热能回收中。膨胀机作为ORC中热功转换的关键部件,其性能决定了系统的可靠性和效率。相对于其他类型的膨胀机,涡旋膨胀机因其体积小、可靠性高、输出范围广等优势
融合数字减影血管造影(Digital Subtraction Angiography,DSA)和血管内光学相干断层扫描(Intravascular Optical Coherence Tomography,IVOCT)技术对图像进行冠脉三维重建对心血管病的诊治和研究具有重要意义。单一模态的图像无法反映冠脉的真实树状形态或动脉壁和斑块的细微组织结构,而目前研究中两种图像的融合技术得到的冠脉三维模型准
随着航空航天等领域对大型结构件高精度加工需求增加,具有工作空间/装备占地比大、精度刚度高、灵活性强和动态性能好等优点的混联加工机器人表现出巨大的应用潜力。为提高混联加工机器人加工精度,本文提出一种基于光栅反馈的误差在线自适应补偿方法,利用外部光栅位移传感器实时检测机器人动平台位置和转角误差,采用柔顺控制算法实现误差在线补偿。首先,分析混联加工机器人主要误差来源,利用闭环矢量法推导机器人运动学模型。
高强铝合金薄壁筒件由其比强度高、质量轻、切削性能好、体积小等优点,在航空航天、核工业等领域有着广泛的应用;但该零件在加工过程中存在切削工艺性差的缺点。本课题采用双刀对置的镜像加工工艺对铝合金薄壁筒件进行加工,并对薄壁筒镜像加工过程中颤振问题进行研究,首先,利用壳理论建立薄壁筒镜像切削工艺系统动力学模型,分析工件与镗杆的振动特性;其次,进行切削工艺系统的稳定性分析,找出影响系统稳定性的主要因素;最终
近年来,微操作技术在精密制造、电子信息、生命科学等领域得到了广泛应用,而在微操作技术中对于系统的姿态调整至关重要,结合目前对于精密定位系统的运动检测手段,开展基于视觉的姿态测量和调整具有重要意义。本文旨在提高姿态调整系统的自动化程度,进行了如下研究工作:设计了基于粘滑原理的双驱动微角度摆动平台,对所设计平台的驱动部分进行了静态特性分析,并利用柔度矩阵法对驱动部分的输入刚度进行建模。考虑平台的紧凑性
有机朗肯循环(organic Rankine cycle,ORC)已成为中低温热能回收利用的有效手段和研究热点。提高ORC传热过程中的热源匹配程度,降低传热过程中的损失,降低热源出口温度,可以有效提高系统的净输出功。然而,净输出功的提高往往以经济性下降为代价,因此,兼顾输出功率、经济性和实用性的有机朗肯循环的研发是现阶段中低温余热回收利用研究中有价值的一项工作。可调节传热窄点的有机朗肯循环(Adj
进气道作为内燃机进气系统的重要组成部分,直接影响着内燃机的进气充量和缸内气流运动,进而影响缸内混合气的形成及燃烧状况,最终对内燃机的动力性、经济性以及排放性能产生重要影响。随着排放法规的愈发严苛,高性能、低成本的内燃机进气道开发势在必行。因此,本文针对四气门柴油机进气道围绕着气道参数化建模、稳态数值模拟、结构参数灵敏度以及结构优化开发这四个部分展开了研究。主要内容和结论如下:采用曲面法在Pro/E