论文部分内容阅读
当今世界人类生存环境遭到严重破坏,化石燃料的燃烧在当中扮演着重要角色,于是可再生能源发电开始受到普遍关注。从资源的可持续发展和环保两个方面来看,光伏发电具有明显的优势,作为世界上最重要的太阳能,已逐渐成为全球新兴产业的重要代表。本文首先从物理性质的角度阐述了光伏电池的发电原理,结合电路理论得到光伏电池的数学模型,并通过MATLAB/Simulink仿真的形式,重点阐述温度和光强对其输出的影响,由此引出最大功率跟踪(Maximum Power Point Tracking,简称MPPT)控制原理及跟踪过程。对光伏电池的输出进行实时调节,从而保证电池稳定运行在峰值功率点,以此来提高发电效率。因此,无论是在学术科研,还是在生产应用方面,最大功率点跟踪技术都具有重要地位。随后从拓扑结构和组合形式两个方面对光伏系统的主变换电路进行分类,设计出在本文的仿真实验中所用到的独立式光伏发电拓扑结构。重点研究电导增量法,并给出了详细的跟踪原理和跟踪过程,针对定步长条件下的电压崩溃问题,选用变步长的思想对其算法实施改进。从得到的波形图可以看出,采用变步长的电导增量法,可以跟踪到峰值功率点并保持稳定运行。然而在跟踪的初始时刻,功率曲线出现阶梯型变化,究其原因,就是开始时候的步长较大。针对这一情况,加入恒压启动对现有算法进一步改进。随后针对光伏系统模型难以确定的问题,利用智能算法的优势,在电导增量法的基础上加入模糊控制,通过对仿真波形的分析可知,新算法具有良好的跟踪性能。上述分析是在理想条件(即所有组件均处在相同温度和光强)下得到的,而实际情况往往会遇到光伏组件局部阴影遮挡的情况。此时,光伏阵列的功率输出曲线将出现不止一个峰值点,常规的跟踪算法很有可能陷入局部峰值点,失去准确性。于是提出适用于上述情况的支路峰值功率点预测与串联补偿电压相结合的新算法。结果表明,新算法能够实现局部阴影下的最大功率跟踪,并且在动态跟踪和稳态运行时仿真效果非常理想。