CFETR中弹丸深度加料及其对氘燃烧率的影响

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:a76s333
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
实现氚自持是中国聚变工程试验堆(CFETR)的核心目标之一,为了实现氚自持,CFETR的设计要求氚燃烧率大于3%,同时要确保1GW的聚变输出功率。本文应用OMFIT框架下的集成模拟工作流STEP评估了为同时达到上述两个目标,所需的弹丸加料参数。为此,需要基于弹丸消融和沉积物理模型准确计算弹丸的消融率和沉积剖面。
  本文基于Parks发展的最新消融模型给出的消融率定标率计算弹丸消融率,并对其进行了改进,包含了磁场对消融率的影响。模型预测CFETR的强磁场环境能大大降低弹丸消融率,增大穿透深度。
  本文发展了面源沉积模型,解决了现在通用的点源沉积模型在切向注入时的奇异性问题,并将模型推广到了任意注入角度的一般情形,从而适合计算任意弹丸注入位形下的沉积密度剖面。
  基于Parks等人计算消融云横跨磁场漂移距离的1维压力弛豫的拉格朗日流体模型,本文发展了更适合实时预测的0.5维约化跨场漂移模型。模型预测结果和DⅢ-D实验中的弹丸沉积剖面能够较好符合。对CFETR等离子体中弹丸注入位置的扫描结果表明,HFS中平面注入弹丸对实现深度加料最为有利。
  将面源沉积模型和0.5维约化跨场漂移模型应用在弹丸消融、沉积程序PAM中,并耦合进了集成模拟工作流STEP中,为输运程序提供粒子源项。应用该工作流评估了CFETR等离子体中为实现1GW聚变功率、3%氚燃烧率所需的弹丸加料参数。模拟结果指出,若采用具有100μm厚碳包壳的1∶1均匀混合弹丸,从HFS中平面注入时,需要的速度约为850m/s。考虑到包壳增强了弹丸强度,预计上述速度不难达到。如果采用中心是氚、外面是氘、包壳是铍或碳的夹心弹丸,预计可以进一步放松对上述速度的要求。
  本文的模拟结果指出,为尽可能提高氚燃烧率,最优的弹丸加料方案为,从HFS中平面,采用上述特殊设计的包壳夹心弹丸,以尽可能高的速度进行注入。本文工作从提高氚燃烧率角度,为未来聚变堆中弹丸加料系统的设计提供了重要参考。
其他文献
近些年,由于社会对绿色发展的倡导,水性聚氨酯(WPU)逐渐成为皮革涂饰成膜材料的研究热点。然而WPU分子链上存在许多亲水基团,导致胶膜的疏水性能较差,严重影响其应用性能。研究表明,有机氟化合物中的氟碳链段具有较强的屏蔽效应和稳定性,能降低材料的表面能。因此,在提高WPU胶膜疏水性能的研究中,有机氟化合物是一类理想的改性材料。基于有机氟化合物的优异特性,本文通过分子结构设计分别合成三嗪基含氟二元醇和
学位
学位
学位
现代社会技术的进步和人口数量的剧增导致陆地上的适宜生存的地域被过度开发,人类可以利用的资源变得越来越少;而海洋作为长久以来人类未踏足过的广袤领域,依旧蕴藏着数量可观的各类丰富的资源,越来越吸引着海洋开发者的目光。与此同时,能够在水下科考的安装调试和作业中发挥多种作用的水下机械手成为了研究的热点。传统的水下机械手多为简单的夹持器结构,只能夹取直径相对单一的物体并且对不同形状的物体适应性较差,难以满足
随着航空航天、核工业及医学生物工程等领域的发展,传统材料已无法满足实际应用所需的高比强度、高比模量以及高耐热性要求。近年来,材料科学技术飞速发展,结合两种或两种以上材料优异性能的复合材料与涂层结构大量涌现,如碳纤维增强复合材料(Carbon fiber reinforced polymer,CFRP)、功能涂层结构及仿生涂层结构等。由于CFRP复合材料与涂层结构等材料是通过人工设计能够被赋予优异的
空间分布式捕获锁定是航天器实现有效载荷在轨操控的关键技术之一,在空间站载荷更换、货运飞船载荷运输和航天器在轨服务等任务中具有巨大的应用前景,是未来我国以及其他航天大国的研究重心之一。自上世纪六十年代以来,国外研究机构对空间载荷捕获锁定技术开展了大量研究并进行了在轨验证。近二十年来,国内研究机构取得了一些捕获锁定技术研究进展,但多着眼于整体式捕获锁定系统,适应性更强、应用更广泛的分布式捕获锁定技术研
学位
中国即将于2020年进行火星探测,不同于月球比较单一的表面特性,火星的地表环境不仅包含松软崎岖的土壤和沙地,同样有坚硬岩石等地形。几何特征崎岖、物理特征多变的地面特征使得火星车运行过程中极易产生滑转、滑移甚至是沉陷等现象,为火星探测任务带来了前所未有的挑战。因此,中国的火星车将采用一种主动悬架的构型,通过轮步式移动等功能,极大地提高了火星车的移动能力。本文针对六轮主动悬架火星车,建立车轮-地面相互
学位
学位
学位
聚变堆主机关键系统综合研究设施(Comprehensive Research Facility for Fusion Technology,CRAFT)是中国重大科学工程,建成后将成为目前国际磁约束聚变研究领域中参数最高、功能最完备的综合性研究平台,大功率移能电阻是其失超保护系统的关键设备之一。本文根据CRAFT大型超导测试平台中最大2H电感值,90kA额定电流及10kV额定电压的大型超导磁体参数