高频区涂覆雷达吸波材料的复杂目标的实时RCS预估

来源 :安徽大学 | 被引量 : 0次 | 上传用户:llzx373
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着计算机技术的发展,我们可以借助AutoCAD软件用非线性有理B样条(NURBS)对目标进行精确的几何建模。然后结合OpenGL技术,从目标的图形显示中获取电磁计算所需的信息。图形电磁计算(Graphical Electromagnetic Computing,GRECO)方法就是在这样的环境下产生的,它具有诸如自动实现消隐,计算速度快,精度高等优点,目前被认为是求解高频区复杂目标的最有效的方法之一。 本论文做了以下研究工作:首先,实现了运用GRECO方法计算了高频区理想导体复杂目标的雷达散射截面(RCS),分别应用了物理光学法(PO)和增量长度绕射系数法(ILDC)计算了目标的面元和棱边的电磁散射,最后综合面元与棱边的散射效应得到目标的总RCS。并应用了几个可视化加速的技巧,显著的提高了图形算法的计算速度。其次,改进了原先的棱边检测方法,使得棱边绕射场的计算精度大大提高。接着,进一步对涂覆雷达吸波材料的复杂目标进行了RCS计算。其中,涂覆目标面元的散射场是通过结合阻抗边界条件和几何光学法(GO)而得到;而涂覆目标棱边的散射场则是通过等效电磁流法求解阻抗劈的边缘绕射场近似得到的。最后成功地分析了目标在线极化模式下和圆极化模式下的电磁散射参量。 通过将大量计算结果与理论值或相关文献结果相比较,效果令人满意。实例证明了GRECO方法在高频区实时求解复杂目标的RCS的快速性和有效性。
其他文献
论文主要分析和研究了WDM全光网络中的生存性技术,对生存性所涉及到的一系列关键技术进行了研究和探讨,研究的内容包括:APS协议实现,节点结构设计、具体的保护恢复原理、以及
昆虫细胞培养技术作为细胞工程基础之一,是现代实验生物学上极有价值的手段之一,广泛应用于生物学、医学及农业的各个领域。本文主要从昆虫细胞培养、细胞系建立、昆虫细胞系