低损耗低半波电压PLZT薄膜调制器研究

来源 :东南大学 | 被引量 : 0次 | 上传用户:gongzi2009
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近些年,信息产业发展迅速,这使得光调制器的研究向高速、大带宽、低损耗、尺寸紧凑的方向发展。PLZT电光薄膜是一种电光系数高、折射率大的压电陶瓷材料,具有设计和制备紧凑型高速电光调制器的潜力。本文使用PLZT电光薄膜结合硅波导和石墨烯电极,研究基于PLZT的新型波导电光调制型器件,重点进行器件的理论研究、性能分析、实验制备。传统微加工工艺中的刻蚀会对PLZT波导带来较大的损耗,制备的PLZT电光调制器具有较大的插损。本文针对这一问题,从光波导基础理论出发提出了一种PLZT和硅的混合型波导的方案。利用硅波导折射率高、损耗低的特点来弥补PLZT波导损耗高的问题,并利用这种波导设计和优化基于MZI结构的电光调制器。通过研究行波电极基础理论,设计并优化了器件的CPW行波电极,同时引入缓冲层中和PLZT较高的介电常数以增加器件带宽。仿真结果显示,当器件电极长10 mm时,半波电压为10.7 V,3 d B带宽为11.75 GHz。在输入光波长为1550 nm时,消光比为28.2 d B,不考虑端面耦合损耗的插损为0.6 d B。由于以PLZT做下包层的波导结构调制效率较低,为了进一步提高器件的调制效率,本文又开展基于石墨烯电极的高调制效率PLZT电光调制型器件研究。石墨烯具有良好的光学和电学特性,其吸收率较低,电子迁移率较高。相较于传统金属电极的电光调制型器件通常需要较厚上包层来克服金属的吸收损耗。用石墨烯做电极可以直接铺在波导芯层表面,有效提高调制效率。仿真结果显示,石墨烯电极的PLZT电光调制型器件在输入光波长为1550 nm时,开关电压为6.2 V,消光比为37.5 d B,响应时间达到纳秒量级。实验上本文进行了石墨烯转移和刻蚀工艺的探索,并改进石墨烯转移方法,对转移后的石墨烯进行光学表征、拉曼光谱表征和SEM表征。结果显示本文使用的方法可以转移出很好的单层石墨烯薄膜。利用微加工工艺和石墨烯转移方法,进行器件的制备研究,搭建测试平台并对测试数据进行分析。
其他文献
随着移动通信在社会发展中扮演着越来越重要的角色,用户对于通信设备的通信速率等体验有着更高的需求。基于现有通信技术,通信速率的提高依赖于可用带宽的拓展,由于高频宽带等特点,39GHz等毫米波频段被纳入5G频谱。为提升毫米波通信系统覆盖等性能,需采用相控阵波束赋形等关键技术。作为相控阵通信系统中不可或缺的模块,移相器具有十分重要的研究价值。移相器是一个能够改变信号相位的模块,其通过调整不同通道中信号的
在现代复杂的电子系统中,尤其是通信系统、雷达、电子对抗等领域,频率综合器的应用极其广泛。随着信息技术的成熟,电子系统也向着小尺寸、高性能和低成本的研究方向不断发展,而频率综合器的发展是其中的关键环节之一,频率综合器的主要功能是为射频收发机提供所需要的本地振荡频率,同时它也可以提供某些数字系统可以用到的时钟频率。频率综合器的种类有很多,锁相环频率综合器是其中应用最广泛的一种,因此本次课题也基于这种结
随着信息与科学技术近年来的飞速发展,各种电子设备所处的电磁环境日益复杂,所带来的电磁干扰问题也受到越来越多的关注。在实际工程应用当中,由于门窗、导线出口、机盖等结构的存在,各种电子设备及系统都包含了孔缝结构,这类结构会为电磁能量提供耦合路径,影响系统内外的电磁环境,因此针对孔缝耦合问题的研究具有非常重要的意义。以往对孔缝问题的研究多为矩形腔体结构,但在飞机、舰船等武器平台问题中,圆柱形腔体结构被广
压控振荡器作为发射和接收机的重要组成部分,其信号的质量决定了引入系统的噪声量,对整个系统性能的影响很大。因此设计低相噪的VCO对提升收发系统的性能起着至关重要的作用。本文主要研究和设计了X波段低相噪VCO。基于压控振荡器相位噪声的模型公式,分析了影响其性能的关键因素。这些因素包括晶体管的参数及直流偏置,谐振器的无载Q值,谐振器与外部电路耦合的外界Q值等。为设计得到低相噪的VCO,本文首先设计了Q值
随着语音交互技术和智能硬件的发展,智能语音终端设备越来越多地进入人们的生活中。在绝大多数的智能语音设备中,声学信号处理都是重中之重的,其性能将直接影响用户听觉体验或系统识别性能。而回声抵消算法是整个声学信号处理中最重要的技术难点之一,它需要将扬声器耦合的回声信号从麦克风拾取的信号中消除掉,同时还需要尽可能地保留近端说话人的语音,以此来提高语音终端产品的双工特性。本文主要研究了面向智能硬件设备的回声
近年来毫米波通信及雷达技术获得了迅速的发展。为了满足社会各行业及个体日益增长的信息交互需求,科研工作者们也在寻求着更加迅捷、高效的数据传输方案。太赫兹具备着丰富的频谱资源,太赫兹雷达也具有波长短,分辨率高等优势,因此一直以来都是被研究和开发的重点。随着器件技术的进步,亚毫米波及太赫兹收发信机具有了更高的可实现性,正在朝着高效率、高可靠性的方向发展。可实现的高功率频率源是收发系统中射频及本振链路的关
自从20世纪50年代,日盲紫外波段被发现以来,紫外探测技术的发展十分迅猛,且已经被广泛运用于军事和民用的各个方面。近年来,宽禁带半导体材料在紫外探测领域的优势逐渐凸显。目前一种新型碳点材料正投入研究,为了增强其在日盲紫外波段的光响应特性,本课题旨在通过表面等离激元效应的增强作用提升碳点的光响应能力,从而达到改善器件性能的作用。该方面的研究对于寻求具有优异性能的日盲紫外探测器具有重要的研究和参考意义
量子点发光二极管(QLED)采用量子点材料作为发光层,应用到有机或聚合物电致发光器件中,是一种新型的电致发光器件。同时,较有机发光二极管(OLED)相比,QLED具备制备工艺简单、色纯度高、稳定性好、波长可调等优点,被认为是新一代发光二极管器件。QLED器件结构中通常采用有机无机层混合形式,其发光性能十分优异,亮度超过105 cd/m2,外量子效率(EQE)超过20%。然而,此类QLED器件中空穴
电子在半导体沟道内的输运难免产生碰撞和散射,限制了迁移速度、带来了能量耗散,是需要利用新概念和新工艺解决的瓶颈问题。通过制备特征尺寸小于电子在大气中平均自由程的真空态纳米间隙结构,电子在没有真空封装的条件下也能实现弹道输运,有效地提高了集成电路器件的工作频率、降低了功率损耗。对于这种新型的器件形式,在器件设计、电流调制机制和电路应用等方面需要大量的研究工作。本论文基于平面型背栅纳米间隙结构,对真空
微波光子滤波器是微波光子信号处理系统的重要器件之一,在通信领域有着广泛的应用。目前已报道了很多基于光纤分立器件的微波光子滤波器,但由于具有体积大、调谐速率慢等缺点,限制了它们的应用。近年来,集成微波光子滤波器引起了人们的关注,但其抑制比等性能仍有待于提高,而且同时能够实现带宽和频率调谐的研究较少。本文分别通过相位调制和强度调制的方法,理论和实验研究了基于可调谐微环谐振腔的微波光子带通滤波器,提出的