论文部分内容阅读
群的酉表示是代数学、几何学、泛函分析等数学分支的重要研究课题。近年来,群与C*-代数交叉的理论和应用的研究也日趋活跃。本文主要从群的酉表示入手,在(T)-性质群的几乎酉表示、自由群F2的受限酉表示和相应的群C*-代数的刻画等方面展开了研究,同时也讨论了几乎收敛性在C*-代数和离散拓扑半群中的应用。所得的主要结果如下:1.将Z˙uk关于(T)性质的充分条件推广到了几乎酉表示的情形。这使得对(T)-性质群在几乎酉表示π下的平均算子π(χ)谱的研究不再依赖于渐进酉表示成为可能,从而将我们研究对象的范围拓展到非AGA的(T)-性质群。2.给出了自由群F2的μ-受限酉表示的概念,指出了该类表示的大量存在性以及对参数μ的依赖性。利用μ-受限酉表示诱导出了对应的群C*-代数Aμ,并通过证明(Aμ,I,A/B)是一个C*-代数的连续丛,刻画了MT?关于参数K的连续性。将A0与一个C*-代数的融合积等同起来,应用Cuntz关于融合自由积的K-理论正合列计算出了A0的K-群。再以K4和A0的K-群相同作为基础,通过建立K2泛表示和平凡表示的同伦,借助于函子MT?的同伦不变性计算出了MT的K-群。3.分别从理论和应用两个方面对几乎收敛性展开了研究。理论方面,在N上定义了有限可加的概率测度MTMT,指出MTMT可测的序列,即恰当分布列都是几乎收敛的,而且其(唯一的)Banach极限可表示成一个形式积分。通过引入Banach极限泛函的概念,定义了赋范向量空间中有界序列的强几乎收敛性,指出现有文献中的几乎收敛和准几乎收敛与我们的强几乎收敛是等价的,从而对向量值序列几乎收敛的概念进行了总结和统一。应用方面,从几乎收敛列的空间MT∞MT(N,C)中提取出一个含幺交换C*-代数――MT.通过Gelfand变换,证明MT的极大理想空间KN是N的一个紧化,而且包含KN作为闭子集,MT则为Hilbert C*-模理论提供了一个非C*-自反C*-代数的例子。最后还指出上述几乎收敛性的应用对于可数无限的左顺从可消半群同样适用。