论文部分内容阅读
近年来,芯片实验室(Lab-on-a-chip)技术正经历着迅速的发展,成为当今重要的交叉前沿学科领域之一。芯片实验室器件是集成了诸多实验室功能的小型化生化分析系统,通过将多种功能集成至几平方厘米的芯片上,可以快速、高效、低成本、低能耗地完成对样品的生化检测和分析。在单一芯片中集成三维的多功能组件对于拓展芯片实验室器件的应用有着重大意义,而这对于当前的平面光刻技术来说是一项艰巨的任务,通常需要堆叠、粘合和封装等复杂的多层工艺。作为一种直接的、无掩膜的制造技术,飞秒激光微纳制造提供了一种能够直接对透明材料内部进行高空问分辨的局域改性新方法,从而为构建具有微光学、微电学、微流体等功能的三维集成器件提供了可能。
本论文针对当前飞秒激光微纳加工领域和芯片实验室技术的发展趋势,以探索飞秒激光在透明材料中的多功能三维集成作为研究方向,开拓飞秒激光三维微纳制备技术的优势,结合各种材料特有的物理化学性质,开展了微光学、微电学和微流体等领域的微器件制作和集成的实验与理论研究。论文主要内容及创新性成果如下:
1、将飞秒激光矩阵烧蚀与飞秒激光诱导选择性化学镀相结合,提出了一种新颖的在透明材料中实现嵌入式三维微电极的方法。与传统的光刻技术相比,这种方法不需要掩模,可以灵活地对微电极的几何尺寸和截面形状进行三维控制,从而控制透明材料内部的电场分布,为在透明材料中实现微电学功能的三维集成提供了可能。这对构建新型的集成微电光器件有重要意义,也为制造具有微电学功能的芯片实验室器件提供了可能。
2、采用飞秒激光直写技术,在铌酸锂晶体中制造了热稳定、低损耗的单模双线光波导,设计并制作了Y分支型波导分束器和Mach-Zehndei型波导干涉仪。采用上述的三维电极制造技术,将嵌入式的三维微电极集成在光波导的两侧,首次在铌酸锂晶体内部实现了集成的Y分支型电光调制器和Mach-Zehnder型电光调制器,并成功获得了电光调制功能。计算表明该嵌入式三维微电极和光波导能够比传统的基于平面波导和电极结构的光调制器实现更有效的电光耦合。
3、首次采用飞秒激光纳米加工技术在石英玻璃中制造出三维的液晶排列层。在微槽的侧壁上诱导出均匀的自组织纳米条纹,并证实这种自组织纳米条纹可以使液晶分子沿纳米条纹的方向有序排列。采用这种方法,可以一步制造出集成在玻璃芯片中的向列相液晶微槽和扭曲向列相液晶微槽。测量结果表明,纳米条纹对液晶分子之间的方位锚定能与摩擦后PI表面的相应值在同一量级。由于液晶具有众多优异的性能,这种可集成的液晶微槽将在芯片实验室领域有重要应用。
4、将采用上述技术制造的液晶微槽和光波导,三维微电极在石英玻璃基底有机地融合在一起,首次在玻璃芯片中实现集成的微型液晶电光器件。通过施加电压,可以对穿过液晶微槽的波导进行有效的相位调制。这种微电学、微光学和微流体器件的混合集成技术为发展三维的多功能芯片实验室器件开辟了道路。
5、采用水辅助的飞秒激光多孔玻璃直写和后退火的方法,首次在玻璃基底中实现厘米级的三维微流通道,并对水辅助的飞秒激光多孔玻璃直写的机理做了初步探讨。原理上,采用这种方法能够在玻璃内部制造出任意长度和任意结构的三维微流通道。这种新颖的技术从根本上克服了以往的三维微流通道制造技术的缺点,在微流体与芯片实验室等研究领域有广阔的应用前景。