论文部分内容阅读
                            
                            
                                光纤激光器具有理想的光束质量、超高的转换效率、高稳定性以及体积小等诸多突出优点,在光通信系统、光纤传感器网络、光谱学和光信息处理等方面均得到了广泛应用。近年来,半导体光放大器(SOA)以其体积小、重量轻、功耗低、易于与其它光学元件集成等优点而备受关注,基于SOA的光纤激光器的研究也逐渐成为了各课题组研究的热点。本文对基于半导体光放大器(SOA)的连续波单波长与多波长环形腔光纤激光器以及SESAM对起振模式数的压缩效应进行了研究。主要研究内容如下:1、研究了不同注入电流情形下,InP/InGaAsP多量子阱半导体光放大器的自发辐射特性。在一定注入电流和工作温度时,InP/InGaAsP多量子阱半导体光放大器的自发辐射线型函数可用高斯函数描述。当注入电流逐渐增加时,InP/InGaAsP多量子阱半导体光放大器自发辐射峰值功率逐渐达到饱和,这是由于增益饱和引起的。同时,自发辐射中心波长随着注入电流的增加而向短波方向移动,当注入电流从50 mA增加到350 mA时,中心波长从1568.6 nm移动到1540.75 nm,带宽从49.2 nm增加到82.5 nm,这是由于InP/InGaAsP多量子阱半导体激光物质随着激励增强自发辐射效应增强及其温度特性的缘故。2、提出半导体可饱和吸收镜(SESAM)对InP/InGaAsP多量子阱半导体自发辐射的压缩。当半导体光放大器的注入电流为100 mA、150 mA、200 mA、250 mA以及300 mA时,压缩带宽分别为1.22 nm、3.2 nm、4.85 nm、5.97 nm以及6.9 nm。在InP/InGaAsP多量子阱半导体光放大器作为增益介质的激光器系统中,SESAM的压缩效应可能会减少该系统的起振模式数。3、提出并实验研究一种基于InP/InGaAsP多量子阱半导体光放大器的光纤环形腔激光器,该激光器利用InP/InGaAsP多量子阱半导体光放大器作为增益介质,并以光纤Bragg光栅作为波长选择器。研究结果表明,当半导体光放大器的注入电流为100 mA时,光纤Bragg光栅工作为23℃时,获得中心波长为1549.66 nm,平均输出功率约为-5 d Bm,信噪比大于45 d B的稳定激光输出。所得激光器的阈值电流为78 mA,电-光斜效率为1.1%。当光纤Bragg光栅温度从8℃增加到28℃时,激光器的输出激光中心波长从1549.27 nm增加到1549.59 nm,漂移仅为0.32nm,说明该激光器有良好的温度稳定性。4、提出并实验研究一种新型的基于InP/InGaAsP多量子阱半导体光放大器的双波长连续波环形腔光纤激光器结构。该结构利用InP/InGaAsP多量子阱半导体光放大器作为增益介质以及两个控制温度的次联的相同光纤Bragg光栅(FBG1和FBG2)作为波长选择器。当半导体光放大器的注入电流为120 mA,FBG1和FBG2工作在5℃和25℃时,观察到波长为1549.56 nm和1549.18 nm的双波长起振,信噪比均大于45 dB。通过调节FBG1的温度可实现双波长调谐,可调谐范围为0.6nm。并用Optisystem软件仿真微波信号的产生,得到频率为22.5 GHz~74.9 GHz范围内的可调微波信号,其温度变化系数约为2.10 GHz/℃。最后,利用两个温度系数分别为0.106 nm/℃和0.108 nm/℃的两个外腔注入激光器得到可调谐环形腔激光器,当两种注入DFB激光器的工作温差从5℃到25℃变化时,波长间距可在0.68~2.95 nm之间进行调谐。5、实验研究了SESAM对基于半导体光放大器连续波多波长环形腔光纤激光器的影响。在无SESAM的情况下,当注入电流小于115 mA时,获得了1573.81 nm和1578.09 nm的双波长激光输出,边模抑制比为30 d B。当注入电流增加到115 mA时,1582.37 nm处的第三模式开始起振,在1573.81 nm、1578.09 nm和1582.37 nm处获得稳定的三波长激光输出。在有SESAM的情况下,由于SESAM压缩振荡模数,在1560.91 nm和1564.12 nm处实现了稳定的双波长激光。