氧化锌基光催化剂的制备及其光催化性能研究

来源 :天津工业大学 | 被引量 : 0次 | 上传用户:wuzhenlikk
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
ZnO拥有良好的光电效应、热稳定性以及量子效应在光催化剂领域成为研究的焦点,但是ZnO较大的禁带宽度(3.20~3.60 e V)使得其仅在紫外光区间(200~400 nm)得到应用,而不能有效吸收可见区间的光。为了突破ZnO不吸收可见光这一缺点,本文选用掺杂和异质结两种不同的方式对ZnO进行改性。在基于ZnO形貌多变的基础上本文分别合成两种不同形貌(微球、纳米棒)的六方晶相ZnO,以不同的形式改变ZnO在可见光区域的吸收以提高光催化性能,再分别利用异质结和多价态金属的特点来降低光生电子和空穴的复合率,最后用亚甲蓝溶液和2-巯基苯并噻唑为废水模型进行光性能测试。(1)首先采用水热反应合成六方晶相CdS多层级花状微球,并在其表面生长ZnO纳米棒形成均匀的ZnO/CdS复合结构,最后利用光还原法将Ag纳米颗粒负载于ZnO纳米棒,成功制备ZnO/CdS/Ag三元半导体光催化剂。采用X射线粉末衍射仪(XRD)、X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对ZnO/CdS/Ag三元光催化剂的晶型、元素价态、结构及形貌进行了表征;采用三电极体系对催化剂的光电性能进行了测试;并考察了其对亚甲基蓝(MB)的光催化降解性能以及对革兰氏阴性菌(大肠杆菌)和革兰氏阳性菌(金黄色葡萄球菌)的光催化抗菌性能。结果显示,在光降解30分钟对亚甲基的降解效果能达到90%以上;在可见光的条件下,0.25 mg/m L ZnO/CdS/Ag对大肠杆菌的灭菌率可达到96%以上,对金黄色葡萄球菌能够实现完全灭菌。(2)作为一种传统的光催化剂,ZnO以出色的光电化学性质被认为是一种良好的光催化剂。然而较低的可见光响应以及较高的光生载流子复合率严重的限制其在光催化领域的应用。因此,制备出一种新颖、稳定、可循环的钴掺杂ZnO花状微球光催化剂。在光催化过程中,基于二价钴和三价钴之间的转化,更多的氧空位生成,更多的光生电子转移到三价钴以此来有效地阻止光生电子和空穴的复合率进而提高整体光催化活性。用2-巯基苯并噻唑(MBT)溶液作为废水模型进行光降解性能测试,结果发现7%Co-ZnO展现出一个出色的光催化活性,对MBT溶液的降解速率达到0.1498 min-1以及在50分钟的降解率为97.3%。大量氧空位的形成和二价和三价钴之间的转化进一步被XPS验证。本文工作为在半导体中掺杂多价金属以此制造氧空位和提高光催化活性提供了一种新颖的观点。
其他文献
超级电容器具有高功率密度、长循环寿命、快速充放电等优势,被广泛地应用于新能源汽车、轨道交通、工业生产等领域。与二次电池相比,超级电容器的能量密度偏低,这限制了其更广泛的应用。故提升能量密度成为超级电容器研究的主要目标,而提高比电容和工作电压是达成该目标的两种途径。本文立足于超级电容器炭电极材料,首先,通过制备新型的软炭基微晶炭,以获得高比电容和良好耐电压特性的微晶炭电极,之后,通过改变有机电解液的
学位
以醋酸纤维素(CA)为原材料,设计纳米纤维膜结构,通过静电纺丝方法实现醋酸纤维素纳米纤维膜(CANM)的制备。经过三步法改性和接枝改性,赋予CANM特定的功能基团,最终得到羧基化改性醋酸纤维素静电纺纳米纤维膜(CANM-COOH)、氨基化改性醋酸纤维素静电纺纳米纤维膜(CANM-NH2)两种新型吸附剂材料。主要研究内容如下:1、以CA为原料,丙酮/DMAc/水(7:2:1)为混合溶剂,通过正交实验
学位
金属锂具有超高的理论比容量(3860 m Ah g-1)低的氧化还原电位(相对于标准氢电极),被认为是下一代可充电锂金属电池最有前途的负极之一。然而,在重复电镀和剥离过程中,不均匀的锂沉积和锂成核导致锂枝晶的生长。这个问题最终将导致短路和不良的电化学性能。为了解决上述难题,人们采用了相当多的策略来解决锂金属负极的挑战,包括对电解液进行改性,形成稳定的SEI层,采用固态电解质,开发具有高机械性能的隔
学位
纺织、印染工业产生的大量染料废水给人类生存造成了极大危害,Fenton法可非选择性矿化有机染料,为染料废水治理开辟了新的方向。本研究首先以可纺的聚丙烯酸(PAA)为功能组分、聚丙烯腈(PAN)为增强组分,采用静电纺丝法制备了PAN/PAA复合纳米纤维膜,基于PAA羧基与铁离子的配位作用将Fenton催化剂负载于PAN/PAA纤维膜上,制得具有催化Fenton反应功能的纤维膜;并设计具有截留铁离子功
学位
在能源危机与环境保护的压力下,天然气作为一种清洁的能源,受到了人们的关注。气体分离膜材料由于成本低、能耗低、操作简单及环境友好,展现出广阔的应用前景。但天然气中N2/CH4体系由于相近的动力学直径、相似的性质,难以实现两者的高效分离,是膜法提纯天然气的技术瓶颈。由于“trade-off”效应的限制,聚合物膜在渗透系数和分离选择性方面都远远达不到大规模应用的要求。混合基质膜由于结合了填料与聚合物基质
学位
涤棉混纺织物兼具涤纶和棉的优点,被广泛用作服装和纺织材料。然而,涤棉混纺织物具有易燃性,存在严重的火灾隐患并极大的限制了其应用领域。因此,提高涤棉织物阻燃性具有十分重要的实际意义。论文采用工艺简单、适用范围广和绿色环保的紫外光接枝技术对涤棉织物进行接枝改性,赋予涤棉织物良好的阻燃性和疏水性。论文第一部分优选苯基磷酰二氯、哌嗪和甲基丙烯酸羟乙酯,成功合成了一种新型磷氮系阻燃剂单体(EPPEM)。通过
学位
lyocell/棉混纺织物具有不易缩水、毛羽少、吸湿透气性好、悬垂性能佳等优点,因而受到广大消费者的欢迎,这种面料在纺织行业的应用范围逐渐扩大。然而,lyocell/棉混纺织物极度易燃,对人们的生命和财产安全存在潜在威胁。因此,lyocell/棉混纺织物的阻燃性亟待提高,如何提高lyocell/棉混纺织物的阻燃性已成为一项严峻且具有挑战性的课题。论文第一部分工作直接使用磷酸肌肉醇(COP)作为阻燃
学位
近年来,聚偏氟乙烯(PVDF)膜因具有优异的耐化学清洗性和高渗透性能等优势被广泛应用于污水处理和饮用水净化等领域。但传统PVDF膜存在渗透选择性差以及不耐污染等缺点,制约着它的进一步应用。针对以上问题,本课题开发了深共晶溶剂作为新型共混添加剂同步提升膜渗透选择性和抗污染性能,随后采用多巴胺和蛋白质的共沉积对PVDF膜进行表面改性,进一步提升膜抗污染性能。本文重点研究内容和关键实验结果如下:(1)利
学位
癌症严重威胁着人类的生命健康,目前临床上主要使用化疗、放疗和手术切除治疗癌症。近年来,光动力疗法作为一种区别于传统癌症治疗手段的新型技术,因其可实现微创或无创治疗、治疗精准度高、操作相对简便、可实现姑息疗法等在癌症治疗领域展现出巨大的应用前景。光敏剂、光和氧气是光动力疗法的三要素,缺一不可。实体肿瘤中氧含量与血管的距离成反比,肿瘤深部甚至达到了“无氧”状态。传统光动力治疗多发生II型光动力过程,对
学位
膜分离技术因具有绿色环保、占地面积少、操作简单等优势而成为研究热点。随着全球工业化的发展,非常规天然气逐渐引起了人们的关注。非常规天然气中不仅含有高浓度的N2,并且其中的CH4排放到空气中还会引发巨大的温室效应,因此分离CH4/N2是现代工业净化非常规天然气的热点问题。混合基质膜(MMMs)由于能将多孔材料与聚合物材料相结合从而兼具良好的渗透性、选择性以及成膜性,引起了科研人员们的广泛关注。金属-
学位