论文部分内容阅读
生体高分子纤维因其固有的生体功能而被广泛应用于纺织、医学、生物等领域,自20世纪90年代以来又出现了许多仿生和超生高分子纤维材料,并将开发的热点转向高强轻质的新型纤维。蜘蛛因具有许多天然纤维甚至高性能合成纤维无法比拟的优异力学性能,而成了国内外许多研究机构和学者关注的焦点,近年来,国外的学者在研究蜘蛛丝结构和性能的同时,借助于日益发展的生物技术,采用基因移植的方法研制了人工合成蜘蛛丝蛋白,并采用化学纤维纺丝的方法将其制成类蜘蛛丝,但由于性能上的缺陷、加工过程复杂、成本高等因素,仿蜘蛛丝尚未实现工业化生产。从材料科学的角度来看,纤维的性能取决于其大分子链结构和聚集态结构,探明纤维性能形成机理的根本在于:掌握其结构和性能间的本构关系。因此,要使蜘蛛丝的力学性能在人造生体高分子纤维上得到表达,研究其性能的结构机理和形成这种结构的方法原理是至关要的。本文以广泛分布于我国各地的大腹圆蛛为研究对象,在研究分析其三种主要的丝纤维——牵引丝、蛛网框丝、包卵丝的力学性能、色泽、密度与吸湿性以及热学性能的基础上,从以下几方面探索了蜘蛛丝优异力学性能的形成机理。研究了蜘蛛丝力学性能的分子基础 分析大腹圆蛛丝纤维的氨基酸组成特征,并通过与其他种类蜘蛛丝及蚕丝丝素纤维的比较,研究蜘蛛丝的氨基酸组成对其分子结构和分子排列的影响。采用激光拉曼光谱和红外光谱技术,分析了不同功能蜘蛛丝的分子构象,探索了蜘蛛丝的氨基酸组成及分子结构和其力学性能间的关系。蜘蛛丝优异力学性能的结构机理及其模化摘要研究了蜘蛛丝力学性能与微观结构的关系采用x射线衍射技研究和分析了蜘蛛丝的结晶结构及其取向。通过对蜘蛛丝的物理、化学处利用扫描电镜观察和分析了蜘蛛丝的微观结构特征,发现了蜘蛛丝具有皮术理芯层结构和原纤化构造。分析了结晶度不足10%的蜘蛛丝具有高强度和高伸长的原因,研究了皮芯层结构对蜘蛛丝力学性能的影响以及不同功能蜘蛛丝应力一应变行为差异的形成原因。研究了成丝条件与蜘蛛丝分子结构及性能的关系在分析蜘蛛丝生物纺丝机制的基础上,研究了成丝过程中蜘蛛丝蛋白分子构象的变化规律,探索了成丝条件对蜘蛛丝分子结构的影响以及蜘蛛随着生存环境和成丝方式的不同对丝纤维性能的自动调控能力,并进一步分析了分子结构和蜘蛛丝力学性能间的关系。研究了蜘蛛丝结构的模化表达分析了影响蜘蛛丝力学性能的关键因素后,利用计算机对蜘蛛主腺体内丝蛋白含有的主要多肤链段的结构进于示了最优化设计,建立了蜘蛛丝皮芯层的聚集态结构模型和其拉伸变形的力学模型,分析了皮层、芯层的结构和应力—应变特征与蜘蛛丝纤维力学性能间的关系。研究了皮芯层的比例和性能特征对蜘蛛丝纤维拉伸断裂模式的作用,并建立了理论方程。