【摘 要】
:
随着中国工业化、城市化的快速推进,生活污水和工业废水产生量与日俱增。在污水处理中,污泥的产生不可避免。一般来说,市政污泥通常含水率高达90%及以上,且其中所含的胞外聚合物是一种包裹在污泥颗粒表面的高分子聚合物,能够将污泥体系中的自由水和结合水分隔开,阻碍结合水的释放流出,导致污泥中所含水分难以高效脱除。而高含水量的污泥一方面会给运输、储存带来一定负担,另一方面则会给污泥的处理处置及资源化带来诸多不
论文部分内容阅读
随着中国工业化、城市化的快速推进,生活污水和工业废水产生量与日俱增。在污水处理中,污泥的产生不可避免。一般来说,市政污泥通常含水率高达90%及以上,且其中所含的胞外聚合物是一种包裹在污泥颗粒表面的高分子聚合物,能够将污泥体系中的自由水和结合水分隔开,阻碍结合水的释放流出,导致污泥中所含水分难以高效脱除。而高含水量的污泥一方面会给运输、储存带来一定负担,另一方面则会给污泥的处理处置及资源化带来诸多不利的影响。综上,故需寻求一种能够高效降低污泥含水率的环境友好型污泥处理技术。诸如秸秆、稻壳等生物质会被直
其他文献
餐厨垃圾占城市垃圾的绝大部分并引起了严重的全球问题,其水分和有机质含量高,如果处理不当,极易造成水体、空气等环境污染,引起人类疾病的传播。生物蒸发是一种处理餐厨垃圾的新技术,该技术利用微生物好氧降解有机物产生代谢热并对餐厨垃圾的水分进行蒸发,以达到有机物和水分的同步去除。有机物降解产生的代谢热对于推动水分的蒸发至关重要,膨胀剂和微生物载体调节含水率和自由孔隙率的同时也可以向堆体提供碳源以强化有机物
我国难处理黄金浸出尾渣产量大,渣中含有金、铜和铅等有价元素,是重要的二次资源。传统氯化焙烧可高效挥发其中的有价元素,然而存在焙烧温度高,且采用天然气或煤作为能源,存在二氧化碳排放量大和烟气洗涤困难等弊端。本论文提出了一种低温低排放的微波氯化焙烧新方法。研究了难处理金矿浸出尾渣的工艺矿物学特性。分析了尾渣中不同组分的介电特性随温度的变化规律,及氯化剂对尾渣介电特性的影响。对比研究了常规和微波氯化焙烧
生物炭是生物质在无氧或者缺氧的条件下高温裂解高碳产物,其比表面积大、表面官能团种类丰富、在300°C-700°C条件下制备的生物炭颗粒能检测到较强的持久性自由基信号(Environmentally Persistent Free Radicals,EPFRs),这些结构特性都为生物炭去除环境中污染物提供了可能。生物炭对环境污染物去除效应的优越性引发越来越多研究者对生物炭去除污染物机制的关注。但随着
随着能源危机和环境污染问题的日益凸显,开发新能源和解决存储问题已成为当前的主要能源战略任务。高性能的储能设备是新能源利用的重要载体。绿色环保的锂离子电池因其工作电压适宜、循环寿命长、能量密度大、自放电小等优点广受人们的欢迎。橄榄石型结构的LiFePO_4相比于其他材料,具有热稳定性好、安全性能高、价格低廉、环境友好等优点受到人们的青睐,成为最具发展潜力的正极材料之一。然而,较差的电导率和较慢的锂离
卤化物钙钛矿材料,作为一种新型的光电材料引起了人们的广泛关注。但是由于它本身的离子迁移特性,会出现不可逆的离子化导致离子欠位的出现并使材料内部存在大量的离子缺陷,这是钙钛矿晶格解离和发光性能的降低的主要原因。由于Pb~(2+)的欠配位引起的金属化过程同样会导致晶格解离,析出的Pb会对人体和自然环境产生危害。因此,如何弥补离子欠位,避免Pb~(2+)金属化的研究显得尤为重要。本论文首先以113型卤化
目前,我国工业废气污染主要以矿热炉气污染为主,矿热冶炼方法多样,废气特性复杂,含多种有毒有害气体,属于高能耗、高污染行业。然而,矿热炉气中CO含量在80%以上,是优质的化工原料气,如能高效回收将带来极大的经济效益同时也有助于我国实现碳中和战略。但是,矿热炉气中浓度较高的杂质气体H_2S和PH_3等极易导致催化剂失活,从而影响CO的回收利用。因此,矿热炉气中硫磷的同步脱除具有现实意义。负载铜铈的铝基
当前,硅材料因其独特物性、储量丰富且制造工艺成熟等优点而被广泛应用于光伏新能源及锂电储能领域。然而,硅中存在的杂质不仅会影响硅太阳能电池的转换效率也将对锂电池的安全性造成严重威胁;此外,硅的半导体属性(低导电性)、体积膨胀效应等问题也给其在锂电池领域的应用带来巨大挑战。基于此,本论文提出采用廉价工业硅为研究对象,利用金属辅助化学刻蚀(MACE)技术与传统湿法冶金提纯技术相结合,最终实现工业硅中杂质
四氯化钛(TiCl_4)是制取金属钛、钛白粉的必需原料,是钛产业链中重要中间产品。我国是世界上钛资源储量大国,但资源特点在于原料中Ti O_2品位低;冶炼的低品钛渣因钙、镁杂质含量高而无法直接用于沸腾氯化工艺生产TiCl_4。高钙镁钛渣用于熔盐氯化工艺制备TiCl_4是目前为止我国钛资源高效开发利用最有效的方法,但仍存在碳热氯化反应机理与熔盐物性尚不明确等科学问题、以及钛渣中各组分选择氯化规律和反
气候变化是21世纪人类面临的严峻挑战,而CO_2是造成气候变化的罪魁祸首。因此,针对CO_2减排和利用的研究显得尤为重要。利用化石燃料燃烧和冶金工业生产排放到空气中的CO_2与储量丰富的天然气和非常规天然气中的低碳烷烃(主要是CH_4和C_2H_6)通过共转化反应既可以减少大气中CO_2含量又可以产生重要化工生产原料(合成气和乙烯)这一技术路线已成为各国学者关注的焦点。目前,对于低碳烷烃通过共转化
装配制造业作为制造业的重要组成部分,是国民经济的重要产业,其生产过程包含加工、运输到装配三个阶段,涉及车间调度和运输调度。针对现有装配制造系统调度优化研究主要集中在车间调度问题上,即将运输过程简化,未考虑车辆数量及载重情况对工件运输的影响的实际情况。然而,随着物流水平的显著提高,为实现资源的最优配置及利润的最大化,工件从加工到装配阶段可能不在同一地方,运输阶段的调度不容忽视。目前,学者们已单独对单