论文部分内容阅读
自20世纪80年代光通信系统被广泛部署以来,人均全球电信容量和人均世界数据存储容量分别以每34个月和每40个月的速度翻倍。由于超大规模数据中心、云计算、物联网、5G通信等应用的推动,全球年度数据总量预计将在2025年达到175 ZB;另一方面,数据中心内部流量仍占全球数据中心IP流量的绝大部分。因此,多种格式、海量、频繁更新的数据对数据中心机架间和机架内光互连接口设计(覆盖超过100米的传输距离)提出更高要求,其中传输容量即将超过当前的100-Gb/s标准。论文研究了高速光互连接口,特别是光接收机前端(包括线性均衡器)以及时钟和数据恢复电路的设计难点和指标权衡。在此基础上提出若干新技术和电路结构,并设计了三款芯片进行流片验证。论文从理论上分析了SiGe HBT的fT、fMAX和MIN对偏置电流密度的依赖关系,并进行仿真验证,从而提出了一种综合优化晶体管偏置电流的方法。此外,还研究了电感、传输线和电容等高速互连结构的损耗机制和集总参数模型,提出了精确提取互连结构寄生参数的方法。论文研究了高速、高增益和低噪声光接收机前端设计的技术难点,比较了现有拓扑结构的优缺点,重点推导了共基-并联反馈跨阻放大器的输入参考噪声电流功率谱密度的完整解析表达式,并提出了一种噪声优化方法。此外,提出了一种新型可变增益放大器,并辅以自动增益控制环路,自适应地提升了后置放大级的线性度。在此基础上,设计了一款基于0.13-m SiGe工艺的56-Gb/s高增益、低噪声接收机前端芯片,芯片已成功流片并通过测试验证,其中裸片面积0.9×0.6 mm2。实测结果显示平均输入参考噪声电流密度为14.54 pA/(?),带宽为31 GHz,最大跨阻增益为71 dBΩ。结果表明,该芯片不仅减轻了带宽和稳定性对输入电容的依赖性,从而同时满足宽带宽和高跨阻增益的要求,而且实现了低噪声设计。论文研究了连续时间线性均衡器的频率特性和自适应均衡方法,综合了基于高/低通滤波的频谱平衡自适应技术以及功率检测与误差比较技术,提出一种新型自适应电路结构,简化了自适应环路,并节省了芯片版图面积和功耗。研究了利用带隙基准和低压差稳压器组成的片上电源管理电路进行电源噪声抑制技术。在此基础上,设计了一款基于0.13-m SiGe工艺的高电源抑制10-Gb/s连续时间线性自适应均衡器芯片。后仿真结果表明,在4-MHz带宽内,片上电源管理电路使得电源噪声抑制有超过30 dB的显著提升。芯片已成功流片并通过封装测试,其中裸片面积0.9×0.85 mm2,采用12-引脚QFP封装。实测结果显示均衡后的眼宽为0.6 UI,并且误码率小于10-3时,光灵敏度达到-30 dBm。论文研究了二阶与三阶Bang-bang环路滤波器参数对稳定因子及抖动容限的影响,并以此为依据综合优化环路参数。讨论了发射极耦合与电流模逻辑单元的设计方法。研究了版图设计中高速信号路径的延时控制与高速信号反射降低技术。与传统螺旋电感相比,在VCO中使用RF传输线构造谐振腔可以减小VCO以及整个芯片的版图面积,且不会牺牲性能。在此基础上,针对100-Gb/s光互连接口应用,研究了三阶II型Bang-bang锁相环结构,实现了基于0.13-m SiGe工艺的超低抖动25-Gb/s全速率时钟与数据恢复芯片,其中核心电路版图面积为0.48 mm2。芯片实测恢复出时钟RMS抖动为750 fs,峰峰值抖动仅为3.46 ps。