【摘 要】
:
由于红外线的辐射特性,其在军民两域均有着大量的应用。红外产品的市场规模也在迅速发展,潜力巨大。红外图像是民用领域图像智能化应用落地的重要信息载体,红外图像可以排除光照的限制在全天候提供有效信息。而目前民用领域高端红外传感器芯片几乎被国外把持,高分辨率的红外传感器芯片价格高昂,国内自产的红外传感器芯片受限于技术水平与生产成本,也难以得到广泛的使用。在各种应用环境中,由于红外成像传感器硬件分辨率的限制
【基金项目】
:
基于太赫兹成像技术的城市轨道交通安检装备研制,广东省应用型科技研发专项资金项目,项目编号:2015B090923004;
论文部分内容阅读
由于红外线的辐射特性,其在军民两域均有着大量的应用。红外产品的市场规模也在迅速发展,潜力巨大。红外图像是民用领域图像智能化应用落地的重要信息载体,红外图像可以排除光照的限制在全天候提供有效信息。而目前民用领域高端红外传感器芯片几乎被国外把持,高分辨率的红外传感器芯片价格高昂,国内自产的红外传感器芯片受限于技术水平与生产成本,也难以得到广泛的使用。在各种应用环境中,由于红外成像传感器硬件分辨率的限制,红外图像有着成像分辨率不足,对比度与信噪比较低等缺点,这阻碍了国产红外传感器的推广应用。为了缓解以上所存在的问题,本文探索研究了红外图像的超分辨率重建算法,研究内容如下:为了提高低分辨率红外系统的成像质量,丰富红外图像的高频信息,本课题提出了多感受野通道信息蒸馏网络MRIDN,实现了对红外图像的超分辨率重建。在网络中本文引入了通道注意力机制、多感受野分支和通道信息蒸馏机制构建更深层的特征提取网络,这有助于网络获得红外图像的高频信息。最后使用亚像素卷积的方法重建出高分辨率红外图像。降低参数量并加强网络效果一直是超分辨率算法的改进方向,本文的另一研究工作是基于前面所提出的多尺度通道信息蒸馏机制的工作上进一步探索跳越残差结构网络性能的影响。损失函数在神经网络的训练中起着重要的约束作用,本文研究不同损失函数对于图像超分辨率性能的影响,对比了常用损失以及在超分辨率工作中引入了感知损失,以及本文自己提出的边缘损失函数。实验证明在复合损失函数的约束下,本文所提出的网络取得了良好的效果。本文对低分辨率红外图像进行了超分辨率算法研究实验。并与许多的业界流行的方法进行了实验结果的比较,结果表明,结合了通道信息蒸馏机制的网络能够有效地完成红外图像的超分辨率重建任务,重建后的图像大大加强了可用性,有利于国产低分辨率红外传感器的规模应用。
其他文献
无线传感器网络作为一种新型的监控方式,可对周围环境进行监测和数据采集,是物联网的重要组成部分,已广泛应用于各个领域。由于无人机具有易部署、灵活性高、机动性强等特点,使用无人机收集传感器监测的数据可以减少延迟,增强无线传感器网络的可持续性。然而,无线信道的广播特性增加了无线通信被窃听的风险。为使监测数据和敏感信息不被泄露,无线通信的安全问题必须得到保障。然而,现有工作在保护无线通信安全的同时均未考虑
智能规划是人工智能研究的主要领域之一,其使用自动化的过程处理现实中的规划和调度问题。随着规划问题的不断复杂化,出现了具有不确定性因素的规划问题。这类问题很难使用原有的智能规划技术求解,这时就出现了概率规划。概率规划作为智能规划的一个分支,弥补了智能规划在求解不确定性问题方面的不足,并逐渐成为研究的热点。概率规划能很好的支持动作的并行性和动作的不确定性。但这些特性会导致随着状态变量个数的增加,状态数
在共乘场景中,具有相似出行路线和相近出行时间的多名乘客一同出行,能降低出行的成本和缓解交通拥堵。同时,减少实际所需的车辆数目能减少用于交通运输的能源消耗。然而现有的共乘研究大多忽略了提供接载服务的车辆的收费标准不一致对乘客出行服务质量的影响。本文针对共乘平台能实时接收共乘出行请求的场景,研究司机与乘客之间的匹配问题。由于司机与乘客双方都存在策略的选择,本文将双方的匹配过程构建为一个主从博弈的过程。
针对一类电磁感应现象的独特过程(自感现象的暂态过程)给出了教学实施案例和简要评析,以期给同行参考。
单张图像超分辨率(Single Image Super-Resolution,SISR)是根据低分辨率图像重建高分辨率图像的操作,是计算机视觉方向里一个重要分支。它也是医学图像、监控和安全等实际领域被广泛使用的图像处理手段。图像超分辨率既可以增加图像的视觉效果,也可以在其他计算机视觉问题中,提高程序的性能。在最近几年,由于深度学习的进步,由深度神经网络构建的图像超分辨率模型得到了积极探索。这些图像
近年来,许多新兴的应用基于深度神经网络为移动终端提供视频分析服务,例如增强现实、人脸识别、智能摄像等等。然而,这类应用通常需要大量的计算资源以提供支撑,远超终端设备的处理能力。将视频分析任务卸载到云端/边缘服务器是近年来解决该瓶颈的一个研究方向。上述研究方向有如下两种研究视角:从终端的视角出发,需要研究视频帧的传输配置,例如分辨率、码率和采样率等等,以最大化该终端能够获得的视频分析精度;从视频分析
近年间得益于强大的硬件计算性能和深度学习的蓬勃发展,以BERT为代表的自然语言模型陆续登上舞台,其在GLUE、SQu AD和RACE等自然语言处理测试任务集上取得了SOTA的优异成绩。与此同时,在通用领域上取得优异成绩的BERT模型却因受限于预训练过程中的语料规模,训练过程中缺少专业领域的事实知识,导致其准确度性能在专业领域中受到限制。目前已有学者提出知识增强型BERT模型,通过引入外部专业知识改
微表情是在人们想要隐藏真实内心情绪,无法伪装和抑制的情况下产生的自发情绪,微表情识别在国家公共安全、临床诊断、审讯等领域具有广泛的应用前景。但微表情是面部肌肉的一种局部小幅度动作,通常只持续半秒,肉眼很难直接检测或识别。因此,需要实现微表情分析与识别的自动化。相较于传统手工特征描述的微表情识别方法,使用卷积网络的深度学习方法以端到端方式集成特征自动提取和分类,在微表情识别领域取得更好的识别性能。卷
在人工智能快速发展的今天,离不开深度学习在各个应用领域的广泛应用与研究,但随着深度学习的不断发展,致使许多大型深度模型以及集成模型不断出现。这为神经网络在对实时性要求高的任务中使用,以及在资源有限设备上的部署留下不小难题。知识蒸馏作为现在深度神经网络模型压缩的主流方法之一,其主要通过让小模型在预训练大模型的监督信号引导下,接受来自预训练教师大模型的知识辅助训练,以达到用更少参数的小模型得到接近大模
行人检测作为计算机视觉的重要分支,在智慧交通、智能监控、搜索营救等多个领域具有重要的研究意义。在实际场景中,行人经常被周围环境所遮挡,使得行人特征信息不完整且不易与背景区分,对行人检测的准确性提出了极大挑战。为有效解决遮挡行人检测困难且定位不准确的问题,本文开展了基于深度学习的遮挡行人检测算法研究。论文主要工作内容如下:(1)针对遮挡行人特征不完整而造成模型检测性能不佳的问题,提出了一种自注意力机