聚苯胺基纳米复合材料的制备及其导电性能研究

来源 :西北师范大学 | 被引量 : 0次 | 上传用户:nikaixinma
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
有机-无机纳米复合材料因其兼具有机聚合物和无机材料的优良特性,在电学、光学、力学和磁学等方面赋予材料许多优异的特性,已成为当今材料科学、物理化学、有机化学和高分子化学等多学科交叉的前沿领域。聚苯胺因其原料廉价易得、合成方法简单、电导率较高且可调、环境稳定性好,以及独特的化学和电化学性能,成为最有应用前景的导电高分子材料。但聚苯胺难溶解、难熔融、难于加工等特性极大地阻碍了聚苯胺的实用化进程。纳米材料的尺寸效应、量子效应、表面效应等赋予其特殊的物理性能和化学性能。因此将纳米技术引入导电聚苯胺的合成工艺中,可以使其集导电性和纳米颗粒功能于一体,能极大地改善导电聚苯胺的加工性。本课题主要研究了以下四方面的内容:1.采用乳液聚合法制备导电聚苯胺。研究氧化剂、掺杂剂种类、反应温度和反应时间对聚苯胺电导率的影响,得到乳液聚合法制备高电导率聚苯胺的最佳合成条件。利用红外光谱(FT-IR)、紫外光谱(UV-Vis)、X-射线衍射(XRD)、热失重(TG)、透射电子显微镜(TEM)等手段对聚苯胺的组成和结构形态进行了分析和表征,并采用四探针测试仪测试了材料的电导率。结果表明,聚合温度控制在0~5℃,聚合时间12h、(NH4)2S2O8为引发剂,对甲苯磺酸为掺杂剂可以制备出导电性能优良的掺杂态导电聚苯胺,其电导率可达3.982S·cm-1,温度最高不能超过25℃。2.采用现场乳液聚合法制备聚苯胺/纳米石墨薄片/La3+纳米复合材料。TEM结果表明:聚苯胺成功插入到纳米石墨薄片的片层间,并将石墨均匀包覆;同时稀土离子(La3+)对纳米复合材料的成膜起了重要作用。热性能分析表明:聚苯胺/纳米石墨薄片/La3+纳米复合材料的热稳定性明显优于纯聚苯胺及聚苯胺/纳米石墨薄片复合材料。3.延续上述方法,通过改变稀土离子和超声条件成功制备了聚苯胺/纳米石墨薄片/Eu3+纳米薄膜材料。TEM结果显示:该材料以一种特殊的纳米薄膜结构存在,完全不同于其他纳米复合材料。膜的中央有一直径约为100nm的孔,且发生了褶皱。这种膜材料非常坚韧,以至在整个透射电镜观察中,放大几十万倍,用200千伏加速电压轰击,膜都没有被击破,纳米薄膜中央有一直径约为100nm的孔是产生此种结果的原因。这种新颖薄膜材料的电导率达到15S·cm-1,明显优于纯聚苯胺。4.采用化学原位聚合法制备聚苯胺/蒙脱土/La3+纳米复合材料。红外和X-射线衍射分析表明,聚苯胺分子成功插入到蒙脱土的片层间。热重分析表明:蒙脱土和稀土粒子(La3+)的引入对纳米复合材料热稳定性的提高起了很大作用。TEM分析表明:聚苯胺成功插入到蒙脱土的片层间,La3+稳定存在于纳米复合材料中,而不是简单分散在纳米复合材料中。从聚苯胺基一元材料到三元复合材料的性能差异可看出,层状化合物和稀土粒子的引入,使复合材料中各组分产生了相乘、诱导、共振、系统等非线性效应,从而得到了兼具优良导电性能和耐热性能的纳米复合材料。
其他文献
β-环糊精能选择性地与各种有机、无机、生物分子形成主-客体或超分子配合物,常被用作分子主体来研究其对各种有机、无机、生物分子的分子识别作用。近年来,具有良好水溶性的2-
发展绿色低碳、高效多元的能源转化技术是解决能源危机和环境污染问题的有效策略,并已经成为当今能源、环境和材料等学科的研究热点。实现高效的分解水效率,需要使用催化剂来降低驱动分解水的电压。发展简单易行的策略合成高效、廉价的过渡金属基电催化材料,探究催化剂微观结构与宏观性能的关系,深入理解催化反应机制,有助于促进水分解制氢技术的发展,对实现能量高效储存与转化具有重要的理论和实际意义。基于电催化分解水中两
文化记忆作为集体记忆中的一种,是以文化为主体的记忆,影片叙事中的文化记忆是通过影视这个记录手段来呈现文化主体。《婼玛的十七岁》是民族文化影片产业的一个典范,本文将以其
农药的应用,对农业的增产增收具有重要的作用。然而,随着人们对农药的广泛过度使用,对环境生物安全和人类健康都产生了巨大危害。农药残留的控制与检测是目前急需解决的重要