【摘 要】
:
近年来智慧教育获得快速发展,使得学习者可以获得丰富的学习资源以及自由的学习时间,也使平台积累了海量的在线教学和学习数据,这些数据进一步被用于优化教学质量,从而受到广泛的关注。然而,当前在线教育平台仍然存在以下问题:(1)在线课程质量良莠不齐,评价标准亟需规范;(2)同类型课程数量众多,使得学习者难以区分不同课程之间的优劣,无法真正为学习者推荐个性化的课程资源。因此,在线教育亟需规范在线课程评价标准
【基金项目】
:
教育大数据分析挖掘技术及其智慧教育示范应用国家重点研发计划项目的个性化教育资源融合与推荐关键技术子课题;
论文部分内容阅读
近年来智慧教育获得快速发展,使得学习者可以获得丰富的学习资源以及自由的学习时间,也使平台积累了海量的在线教学和学习数据,这些数据进一步被用于优化教学质量,从而受到广泛的关注。然而,当前在线教育平台仍然存在以下问题:(1)在线课程质量良莠不齐,评价标准亟需规范;(2)同类型课程数量众多,使得学习者难以区分不同课程之间的优劣,无法真正为学习者推荐个性化的课程资源。因此,在线教育亟需规范在线课程评价标准确保课程质量,其次,需要从利于学习者的角度,提高不同课程之间的区分度以及推荐个性化学习课程。因此,有必要对在线课程评价方法进行优化和创新。为实现这一目标,本文提出了一套课程画像指标体系,即一种新的针对课程内容的在线课程评价指标体系,该指标体系包含4个一级指标和14个二级指标,其中有5个指标是课程的隐式特征。本文首先利用三个算法进行指标特征的抽取:使用改进的Fast Text算法对课程介绍文本进行分类,抽取了与课程难度相关的三个特征;使用SVM算法对课程评价进行情感分析,抽取了与课程好评度相关的特征;使用Jaccard相似度对同类课程进行细粒度聚类,计算出了每门课程的知识点覆盖度。进一步地,本文结合AHP层次分析法和熵权法确定了课程画像各级指标的权重,最后,通过使用一种能够反映课程画像突出指标的线性加权模型计算出了课程画像的各指标值,实现了课程画像的构建。综合而言,在课程资源推荐方面,本文基于当前在线教育的场景分析了现有教育资源推荐方法的优缺点,将课程画像和学习者画像进行结合,提出了融合学习者特征和课程特征的基于深度置信网络的课程资源推荐方法。通过使用在线教育平台的真实数据集对实验构想进行了验证,结果表明:课程画像的定义、课程特征的抽取、课程画像指标值的计算方法具有良好的合理性;相对于传统推荐算法,本文提出的融合学习者特征和课程特征的推荐模型在性能上获得了显著的提升。本文提出的研究方法被成功用于构建课程画像及推荐系统并获得初步应用,这对于规范在线课程质量,提高个性化在线教学,提供了有力的参考。
其他文献
近几年,以MOOC平台为典型代表的在线教育平台正迅猛发展。在线教育没有中高考等门槛,没有必须在某个地方才能学习的要求和弊端。这让每个人都可以平等地享受到名牌大学的优质教育,学习者可以根据自己的兴趣和需求,自由地选择有兴趣的,流行的或者是大家都称赞的课程。但是,这在为学习者学习提供极高的便捷性的同时,也割裂了传统课堂学习环境下,学习者和其他人的直接接触。由此导致了学习者总是习惯于独自学习,没有动力去
在实际的深空探测任务中,当探测阶段处于接近段时,探测器距离小天体较远,搭载在探测器上的窄视场相机无法清晰地观测到小天体表面的纹理信息,只能观测到轮廓信息。在此阶段准确恢复出的小天体模型,会为近距离详细测绘阶段探测规划提供依据,同时为近距离高精度小天体三维重建任务提供初始模型。如何应用小天体的轮廓信息准确恢复其三维模型对于小天体探测任务具有重要意义。本文从相机外参数精准、相机外参数存在误差两方面出发
近年来,人工智能技术(AI)已经在很多领域获得了极大的发展,但高精度机器学习模型往往依赖大量的有标注数据,而在很多诸如医疗、军事等实际的应用场景中,样本的获取非常困难,标注也需耗费高昂的人力成本,这极大的限制了AI的应用。此外,现在的机器学习模型越来越庞大,利用大量数据从头训练需消耗巨大的计算资源,然而,人类却具有利用少量样本快速学习的能力。因此,使机器也像人类一样具有在少样本条件下进行鲁棒性学习
考试是一种严格的知识水平鉴定方法。通过考试可以考核学生的学习能力和知识储备。为了保证考试结果的公正、公平性,考场必须要有很强的纪律性和约束性,并且专门设置有主考、巡考等考场工作人员监督考试过程,绝对禁止任何形式的作弊行为,否则作弊考生将要承担法律责任和刑事责任。传统的监考手段主要依靠人力监考,即在每个考场设置相应的考场工作人员进行监考、巡考、处理考场突发情况等事务。大规模的集中考试会消耗考试机构大
随着计算机软件的蓬勃发展,软件漏洞的数量也飞速猛增。漏洞修复成为越来越重要的问题,传统的代码审查对于软件从业人员专业素养要求较高,而且随着软件规模的增大,仅依靠代码审查无法满足漏洞检查的要求;基于规则的漏洞自动化检查技术对代码进行检查需要依靠专家所定义的规则;传统机器学习方法对漏洞进行检查需要人工提取特征;近年来深度学习的发展为漏洞检测提供了新的研究方向。然而现有的研究存在对代码的结构信息利用不全
阀门轴是决定阀门质量和可靠性的关键零件,其加工方面的瓶颈近几年已基本解决,检测方面却形成短板效应:尺寸公差主要靠人工检测,形位公差主要靠设备保证,对于加工后的变形则主要靠零件返修。使用落后的检测方式难以保证航天产品的可靠性,因此研究设计一套专用的阀门轴类零件作用直径自动测量系统是十分有必要的。本文提出了一种轴类零件作用直径自动测量系统的设计方案,设计采用线性CCD对待测轴类零件直径与作用直径进行非
随着互联网时代的到来,信息化已经成为当今社会的趋势。随着计算机技术在工业界、产业界以及人们日常生活中的广泛应用,产生了海量的数据。在海量数据中,往往包含着丰富的信息,有待于发掘和分析,为智能化时代的智慧问答、辅助决策、推荐系统等提供更加有力的支撑手段和理论依据。因此,从海量的数据中提取有效的信息,并归纳总结成能够为各行各业提供帮助的知识,已经成为大数据时代人们的共同目标。在人工智能技术、机器学习技
为了解决司法文书的语法错误纠正及文本质量估计问题,本文通过多种方法及实验研究上述问题的解决方法。通过研究当今研究现状,了解当前领域的常用解决方案,并融合司法文书相关特征,对于司法文书文本纠错问题,提出面向司法文书的基于规则和语言模型的纠错方法以及基于深度模型的纠错方法;对于司法文书文本质量估计问题,提出基于语义理解的文本质量估计方法。通过实验,证明上述方法可以较为有效地对司法文书中的语法错误进行纠
大多常规的行人重识别数据集都是在较短时间跨度内收集的,这期间行人的服饰与外观基本不会发生改变。但在例如商场监控、罪犯追踪等很多现实应用中,同一个人的衣服可能会更换,不同的人也可能穿着相似的衣服,常规的行人重识别方法过于依赖行人的服装信息来进行行人匹配,不适用于这种服装变化场景下的行人重识别任务。本文针对服装变化的行人重识别问题进行探究,基于深度卷积生成式对抗网络提出了一种特征解耦方法,用于分离服装
研究一个组织的架构对于了解该组织的运作方式、定义组织的性质、发现其关键节点、发掘核心部门和锁定重要人物以及判断该组织运行状况、刻画组织全貌等方面都有着重要作用,在情报咨询、商业调查、投资分析、打击非法组织等方面有着广泛的应用。现有的组织架构构建算法多是基于对单一数据源的分析,这种方法的缺陷在于很难刻画出目标组织的架构全貌。针对以上问题,本文提出了课题研究目标,即构建出一个基于多源数据的,包含信息采