论文部分内容阅读
直接空冷系统具有节约冷却水、系统结构简单等优点,可以有效带动富煤缺水地区的电力发展,因此近些年来,直接空冷系统在我国北方得到了大范围的应用。但由于直接空冷系统采用阵列式风机平台和A型框架结构单元以及以环境空气为冷却介质的特点,使得机组在运行中会出现诸如风机集群运行效率不高、气流分配不均以及易受环境气象影响等问题,这一系列问题会直接影响到空冷凝汽器的换热性能。因此,如何揭示、掌握直接空冷系统空气侧气流的流动特性及其对空冷凝汽器换热性能的影响机理成为目前直接空冷系统设计、研发过程中比较棘手的问题。本文对直接空冷系统中空气侧气流流动特性及表征方法的研究,以空冷机组受环境气象条件影响大、风机集群运行效率不高等问题为起因,通过采集空冷风机及单元周遭气流的脉动时序信号开展实验研究,研究环境自然风与风机机械风的区别,揭示风机入口干涉效应和风机群抽机理,探究空冷单元流场的分布特性,最后将研究拓展到基于空冷电厂环境气象时序数据,将多元环境引入到空冷系统设计的典型年优化上。本文结合空冷系统本身受环境自然风和风机机械风共同影响的特点,将功率谱分析方法应用于空冷风机周遭气流动态特性研究,确定了采用热线风速仪获取气流湍流脉动时序信号的实验方案,用表征气流动态特性的代表性参数(功率谱指数、能量累积因子)对环境自然风和风机机械风的频域动态特性进行了定量区分。将功率谱分析方法可区分自然风和机械风的结论应用于风机入口气流流动特性的实验研究中,定量分析了风机入口气流速度、湍流强度、功率谱指数及能量在频域的分配状况,得到了风机入口机械风的定量影响范围。逐步增加被测风机周遭风机的台数,对风机的集群运行特性进行研究,主要内容包括:1)被测风机的流量并不随周遭风机台数的增加而单调减小;2)风机入口的对称性是影响风机流量的主要因素之一;3)在风机集群运行时,被测风机主流区的流量和速度较单台风机运行时降低,而被测风机近壁区的流量和速度较单台风机运行时增大;4)风机入口气流的湍流强度会随着风机台数的增多而增加。针对空冷A型框架单元开展流场实验研究,探究单元内部A型框架倾斜面出口气流的速度分布特性,揭示了空冷单元气流分配不均的原因,实验结果表明:在远离风机中心截面的区域存在流场分布的不对称性,空冷单元底角处存在流动死区,中心区域存在低速区,A型框架倾斜面出口速度和湍流强度在风机中心截面两侧表现出明显的不对称性。依托电厂当地气象环境历史时序数据,提出了一种基于多元环境因子的FS统计气象典型年的表征方法。该方法可以兼顾到所有对系统有影响的气象参数(环境温度、环境风速、太阳辐射等),并且能够反映直接空冷系统最为敏感的冬夏季节的气候长期规律,可为空冷系统的设计、研发提供更为合理的指导。