论文部分内容阅读
耳语音作为人类的一种辅助发音方式,在日常生活中起着较为广泛的作用,尤其是在金融领域,公安司法领域中各种身份的确认。说话者为了保证信息的私密性,常常会用到耳语音。正因如此,耳语音说话人识别也作为一个新的课题被提出来。耳语音主要是用在手机通话中,语音必然会受到信道畸变的影响。传统的识别模型遇到训练和测试的信道环境差异变大时,识别率就会大大受到影响。因此,必然需要一种稳健的信道补偿算法来增强这个说话人识别系统。为了解决这个问题,本文做了以下几个方面的工作:一、将各种信道的耳语音数据混合在一起训练通用背景模型(UBM),然后在此基础上进行最大后验概率(MAP)自适应获得说话人模型,将此模型和常规的GMM模型进行识别率的比较。实验证明,UBM模型优于普通的GMM。二、将联合因子分析(JFA)应用到耳语识别中,根据耳语数据库的特性,采取分开估计和省略残差空间的方法。具体在识别过程中,通过将训练所得的说话人因子和测试所得的信道因子相结合的方式,达到说话人不断适应测试信道环境的目的。实验结果显示修改后JFA的识别效果大大提升。另外,根据JFA在短时识别方面效果不理想,提出了一种在模型上保持说话人因子不变,而将信道因子用到特征方面,对每一帧特征矢量进行补偿的混合补偿法,该方法相对于JFA来说补偿的更为细致,实验显示HH信道训练时1s和2s平均识别率分别提高4.36%和3.89%,EP信道训练时1s和2s平均识别率分别提高4.14%和2.64%。三、根据支持向量机(SVM)的区分性,将说话人超向量输入到SVM中,结果系统性能不如UBM-MAP系统。这时将说话人因子矢量输入到SVM中,由于说话人因子在辨认系统中特征维数低,易线性可分,获得了良好的识别效果。然后经过三种信道补偿方法进一步去冗余,取得了和JFA相当的识别结果。