基于被动力控制的机器人砂带磨抛振动抑制研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:fljk888
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
叶片作为航空飞行器发动机等特殊装备的重要组成部件,其轮廓形状和表面精度直接影响着此类装备的工作性能和服役寿命。由于机器人具有成本低、可扩展性强、加工灵活等优点,已逐渐成为叶片精密加工的主流方式之一。但就目前而言,工业机器人存在刚性弱、强耦合、运动精度低等问题,在磨抛加工过程中极易产生加工振动,从而影响零件的表面加工质量。因此,本文主要围绕机器人砂带磨抛加工振动抑制方法展开研究,具体完成工作如下:(1)基于机器人砂带磨抛材料去除机理,建立了磨抛加工过程中忽略轴向力的三分力模型,并对各分力与具体切削参数之间的映射关系进行了推导,发现维持工件和接触轮之间的法向接触力稳定是保持磨抛系统加工稳定性和抑制加工振动的一种有效方法。(2)将机器人砂带磨抛系统简化为单自由度振动模型,通过求解磨抛机空转和工件与砂带接触两种工况下的系统振动微分方程,发现提高磨抛机系统阻尼是保证磨抛加工过程中接触法向力稳定性、抑制磨抛加工振动的关键因素,并基于此将现有传统磨抛机改进为了具有力适应能力的恒力磨抛机和振动抑制能力的抑振磨抛机。(3)提出了一种基于被动力控制的机器人砂带磨抛加工振动抑制方法。针对传统磨抛机在力控制方面所存在的缺陷,设计出基于PID闭环控制的弹性气缸控制回路和阻尼气缸控制回路,实现了基于被动力控制的磨抛加工振动抑制,并利用三类磨抛机搭建机器人砂带磨抛试验平台开展多种工况下的磨抛加工对比实验,从加工振动信号、接触力稳定性、试块表面质量等方面验证了接触力被动控制方法及磨抛机结构改进的有效性。通过上述研究来弥补机器人砂带磨抛在加工振动抑制方面的不足,并期望实现复杂型面叶片的机器人砂带磨抛加工全自动化高精度生产。在保证磨抛加工质量和表面精度的同时,致力于进一步提高叶片加工效率,并广泛应用于实际生产。
其他文献
高压电-气位置伺服系统由于其功率密度比大、工质易于获取等优点逐渐在机械重工、航空航天、国防军工等领域取得了一系列应用。然而,由于空气具有可压缩性强,粘性小等特点,造成系统非线性较强,并且气体的高压化加剧了系统核心元件电-气伺服阀的气动力和其他干扰,使得高压电-气位置伺服系统的控制难度增大。同时,高压电-气伺服阀其本身结构特点导致了系统的内部耦合,进一步降低了系统控制精度并增加了系统耗能。本文针对高
学位
钯碳(Pd/C)催化剂与1,4-双(苯乙炔基)苯(DEB)混合后得到的DEB-Pd/C吸氢剂是消除密闭空间中有害氢气的最常用吸氢剂之一。然而,Pd/C催化剂具有易自燃、Pd颗粒粒径大、分散不均匀且易于团聚等缺点。因此,开发Pd颗粒粒径小、均匀分散且不可燃的新型吸氢催化剂具有重要意义。本文通过一步水热合成法将Pd颗粒原位封装在八面沸石(FAU)型分子筛中而制备得到了Pd@FAU催化剂,研究了其晶化过
学位
钠金属具有成本低廉、理论容量高和氧化还原电位低等优势,被认为是钠电池的理想负极材料。然而,钠枝晶生长和金属钠难加工成型的问题限制了钠金属负极的应用。基于此,本文采用机械冷压法将氮化物与金属钠复合,以抑制钠枝晶生长和提高金属钠的机械性能为目的,开展了对钠金属复合负极的性能研究。主要内容如下:(1)以类石墨相氮化碳为固体添加剂获得了钠金属复合负极。氮化碳中的吡啶型氮和吡咯型氮可提供“亲钠”位点,促进均
学位
采用原位聚合的方法制备聚合物电解质和电池是改善聚合物电池电极/电解质界面的有效方法。1,3-二氧戊环(DOL)是金属锂电池最常用的电解液溶剂之一,被广泛用作原位聚合单体来制备聚合物电解质和电池。但是DOL的阳离子开环聚合反应迅速,所形成的聚合物电解质对多孔正极的浸润差,不能与正极形成良好的共形界面,限制了其在含高载量正极电池中的应用;此外,电池中的锂负极稳定性差,与电解质会发生副反应并伴有锂枝晶的
学位
感应电机作为工业场景中的基础动力设备,感应电机的性能和稳定性成为人们日益关注的指标。但电机使用工况复杂且多变,感应电机的故障率较高,因此研究电机的故障诊断工作具有重大意义。本文以感应电机的振动信号为分析对象,针对故障电机的振动信号中故障特征弱、易受干扰等问题,从特征增强和阶次提取两个方面将各稳态速度段数据加以有效利用,实现故障诊断。本文主要从以下几方面进行了深入研究:从感应电机的机械结构和工作原理
学位
在人类生存和社会发展历程中,水环境污染已成为了日益严重的全球性问题。其中,广泛使用的抗生素和有机染料不可避免地会流入到水体环境中,给生态平衡和人类健康带来了巨大的威胁。因此,开展污染水体的修复研究刻不容缓。基于产生HO·、SO4·-和~1O2等活性物种的高级氧化技术在处理污染中体现出了高的效率和技术优势。近年来,过一硫酸盐(PMS)基高级氧化技术研究已成热点之一;而过氧化镁(MgO2),作为稳定性
学位
多孔陶瓷兼具陶瓷材料和多孔结构的优点,作为催化剂载体被广泛应用于环境催化中,有效解决了传统粉末催化剂可回收性差和块状催化剂催化效率低的问题,但日益严格的环境保护法规对其提出了更高的性能需求。基于光固化增材制造的周期性点阵结构的二氧化钛多孔陶瓷是当前最具应用潜力的发展方向之一,但其仍存在许多难点。首先,二氧化钛具有强烈的紫外吸收作用,难以实现光固化成形;其次,周期性点阵结构参数多样,各参数与性能之间
学位
甲烷干重整反应是一种能够同时将甲烷和二氧化碳转变为高利用价值的合成气(一氧化碳和氢气)的高温吸热反应,因此可以通过提高甲烷干重整反应的长期转化率来达到减少温室气体排放的目的。甲烷干重整反应需要催化剂参与才能进行,主要的催化剂有Ni基催化剂和贵金属催化剂。然而,Ni基催化剂存在积碳的缺点,如何实现Ni基催化剂在高温甲烷干重整反应中的高活性和高稳定性是目前的研究热点。本文通过第二金属改性的方法来提高N
学位
锂金属具有极高的理论比容量(3860 m Ah g-1)和最低的电化学电位(-3.04 V vs.标准氢电极),因而被认为是下一代高能量密度电池负极的首选。然而,金属锂负极存在的枝晶生长和循环稳定性差等问题严重限制了其商业化应用。构筑稳定的电极反应界面是抑制枝晶、提高循环稳定性的关键。本文从界面改性的角度出发,采用具有丰富亲锂官能团、电化学性能稳定并且成本低廉的聚丙烯腈(PAN)为主要改性材料构筑
学位
脉冲神经网络(Spiking neural network,SNN)是新一代的人工神经网络,其借鉴了人脑的结构和工作原理,为智能计算的发展提供了一种更有前景的方法。为了模拟生物突触和神经元丰富的动态行为,需要更低成本和纳米尺度的人工突触和神经元。忆阻器具有简单的交叉结构,能模拟生物突触和神经元的多种功能,有利于构建更快速度和更低功耗的神经网络。但是,忆阻器的研究仍存在一些亟待解决的问题:首先,需要
学位