论文部分内容阅读
小麦是世界最重要的粮食作物之一,培育高产、稳产、优质、抗病的小麦品种是小麦育种的重要目标。长江中下游麦区是我国第二大麦区,宁麦9号与扬麦158在本麦区小麦育种中扮演了重要角色,在近10年江苏省淮南片区与国家长江中下游区域试验审定的品种中,近80%的材料为宁麦9号或扬麦158的衍生后代,显示二者具有成为新一代骨干亲本的潜力。为更好地利用这两个材料,对其重要农艺性状、品质性状、抗病性状等开展遗传研究具有重要意义。本研究以来源于宁麦9号与扬麦158的282份重组自交系为材料,利用小麦illumina 90k基因芯片对其进行基因型分析,构建高密度遗传图谱。对282份重组自交系的产量性状、株高、抽穗期与赤霉病抗性等进行多环境表型鉴定,进一步综合基因型与表型数据开展QTL定位,最后对某些稳定位点进行遗传效应分析、分子标记开发及其辅助育种利用。通过本研究,主要获得以下结果:(1)获得一张包含2285个bin标记、41个连锁群、总长3002.1 cM的遗传图谱,标记间平均遗传距离1.31 cM,并且与中国春小麦参考基因组呈现良好的共线性。(2)宁麦9号与扬麦158均表现出良好的赤霉病抗性,宁麦9号略优于扬麦158,RIL群体的赤霉病抗性呈现较大变异,最低病穗率均在10%以下,而最高病穗率基本都超过50%。基因型、年份及地点对病穗率均有极显著影响,而其交互作用则无影响,病穗率在不同环境中均呈极显著正相关。综合4个环境赤霉病抗性鉴定数据,共发现10个抗赤霉病QTL。其中,QFhb-3B.1与QFhb-5A在所有环境中均被检测到,通过遗传作图与位置比对,来源于宁麦9号的QFhb-3B.1极可能为Fhb1位点,而来源于扬麦158的QFhb-5A可能为一个新的抗性QTL。针对QFhb-5A开发出KASP标记,并对其进行了初步验证及溯源分析,发现QFhb-5A很可能来自于意大利小麦品种,并经历了自然选择与人工选择。结合分子标记选择,获得7份赤霉病抗性突出的品系,可应用于抗赤霉病育种。(3)在3个环境中,宁麦9号穗粒数均高于扬麦158,千粒重则低于扬麦158,穗数与产量在不同环境中表现不一致,环境对4个性状均有极显著影响,基因型与环境的互作对4个性状均无显著影响。穗数与产量在不同环境中均呈极显著正相关,千粒重与穗粒数呈负相关,与产量呈极显著正相关。通过QTL定位鉴定到控制穗数、穗粒数、千粒重及产量的QTL分别为9、8、10与12个,其中穗数、穗粒数和产量的遗传率较低,千粒重的遗传率较高,可进行遗传选择。通过分析3个多环境稳定的千粒重QTL的遗传效应,Qtkw-1B+Qtkw-4A的位点组合选择效果最佳,可应用于小麦千粒重的遗传改良。(4)扬麦158的各节间长度、穗长及株高均高于宁麦9号,基因型、环境及二者的互作对各节间长度、穗长及株高影响极显著。综合3个环境的株高数据,共定位到6个株高控制区段,并成功转化为适用于大规模筛选的KASP标记,经过初步验证,聚合Qph-2D、Qph-5A.1标记位点对整体株高具有较高的选择效率;继续聚合Q2A后,中选材料显著减少,可能降低选择效率,而对Q5A需要在早代育种材料进一步验证,并且对Q2A与Q5A一因多效位点的选择建议以降低株高的等位变异为主;Qd1-5D可作为D1的选择标记对株高进行优化选择。(5)宁麦9号的抽穗期较扬麦158略早,重组自交系群体在不同环境中可相差7-11d,并且均呈极显著正相关。基因型、年份、地点及基因型与年份的交互作用均对抽穗期有极显著影响。综合5个环境抽穗期调查数据,共检测到26个控制小麦抽穗期的QTL,表型贡献率为2.50%~11.91%。Qhd-2B.2、Qhd-3B与Qhd-5A.2在多个环境中被检测到,其表型贡献率也较高,进一步分析其遗传效应发现,单个QTL中,Qhd-5A.2对抽穗期的影响最显著也最稳定,当聚合2个位点后,Qhd-2B.2+Qhd-5A.2组合效果最佳,进一步聚合3个位点后,效应未有显著提高。(6)通过位置比对,发现10个QTL簇,有的同时控制产量性状与抽穗期,有的同时控制抽穗期与赤霉病抗性,还有的对产量性状、株高、赤霉病抗性等均有影响,但其优势等位变异的来源不尽相同。对于优势等位变异来源于同一亲本的位点,可以利用少量标记来进行选择;对于优势等位变异来源于不同亲本的位点,一方面可根据育种目标进行取舍,另一方面需要扩大育种群体,打破连锁累赘,运用多标记进行选择。