论文部分内容阅读
随着全球通信业务快速增长,对新一代的光纤通信系统的容量提出了越来越高的要求。从而,也相应地对现代光通信系统的核心部件——光放大器提出更高的挑战。目前,新一代光放大器——拉曼光纤放大器(RFA)被认为最具潜力和发展前景。其中首要问题是寻找合适的拉曼光放大器泵浦源。光纤激光器作为第三代激光器,与传统激光器相比具有许多优点,在许多方面己体现出具备理想泵浦源的优势。特别是拉曼光纤激光器(RFL)因其同时具有高功率输出及激射波长灵活可调的特性,能弥补目前半导体激光器的不足,而成为光通信系统中的理想泵浦源。本论文基于光纤中受激拉曼散射(SRS)现象的基本原理,围绕拉曼光纤激光器及多波长拉曼光纤激光器(MRFL)展开研究。首先,概述了SRS的基本原理,并对级联拉曼光纤激光器进行了理论分析。给出了拉曼光纤激光器的理论模型,通过对模型的分析给出了基于Newton-Raphson法的数值求解方法。同时为了提高运算速度及保证稳定性,我们采用拉曼光纤激光器动力学方程的近似解析解作为数值算法的初始值。结果表明,采用这种改进的数值算法可以有效提高运算速度和稳定性。其次,分别对Nd:YVO4固体激光器泵浦和掺镱双包层光纤激光器(DCFL)泵浦的RFL进行实验研究。其中用Nd:YVO4固体激光器泵浦的RFL获得了1.15W的1484nm拉曼激光输出,并且其功率波动在一小时内小于6%;采用DCFL泵浦RFL,获得了3.44W的1484nm拉曼激光输出,光-光转换效率为28.1%。实验结果都达到预期效果,并与理论基本一致。最后,在此基础上,我们结合保偏光纤Sagnac环梳状滤波功能及综合利用掺磷光纤中P2O5和SiO2的拉曼频移,第一次成功地应用掺磷光纤的拉曼频移效应实现了O波段波长间隔可调谐的多波长拉曼光纤激光器。在1064nm的泵浦功率为2.5W情况下,分别实现波长间隔为0.8nm和0.43nm的多波长激光稳定输出,实验结果与理论分析一致。