【摘 要】
:
随着蓝色经济的发展,海上智能移动终端(如无人巡逻舰、浮标传感器、智能移动设备等)数量呈指数级增加,海上移动终端对计算资源需求不断增加。陆地通信技术的快速发展使人们适应了拥有互联网的生活,在陆地环境中对互联网的高度依赖,促使涉海人员对海洋物联网同样产生高度依赖。海洋物联网利用互联网技术,将智能设备相互联通,构造出一个覆盖海洋环境的物与物互联网络,获取大量海洋数据并进行实时分析处理,实现对海洋设备系统
论文部分内容阅读
随着蓝色经济的发展,海上智能移动终端(如无人巡逻舰、浮标传感器、智能移动设备等)数量呈指数级增加,海上移动终端对计算资源需求不断增加。陆地通信技术的快速发展使人们适应了拥有互联网的生活,在陆地环境中对互联网的高度依赖,促使涉海人员对海洋物联网同样产生高度依赖。海洋物联网利用互联网技术,将智能设备相互联通,构造出一个覆盖海洋环境的物与物互联网络,获取大量海洋数据并进行实时分析处理,实现对海洋设备系统化管理。海洋物联网产生大量数据需要传输处理。如何利用有限通信与计算资源处理大量海洋移动终端任务,是一个热点问题。通过提供计算、通信资源以及云服务,移动边缘计算成为支持物联网中计算密集型任务的一种有效方式。本文研究移动边缘计算在网络中的计算卸载问题,意在降低海上移动终端计算卸载成本,主要内容包括:1)针对多终端单边缘节点的海上网络结构中计算卸载成本高和多种性能间难以权衡的问题,提出了一种流量资费感知计算卸载代价函数模型,该模型将流量资费引入计算卸载代价,以便权衡延迟、能耗和流量资费。提出一种基于Deep Q Network的计算卸载算法,该算法在任务延迟的约束条件下实现联合计算卸载和计算资源分配算法。仿真实验表明算法的有效性,能够权衡延迟、能耗和流量资费并降低任务卸载的成本。2)针对海上移动边缘网络模型不够准确和网络节点具有高度动态性的问题,建立引用公海双射公式的海上通信模型,并提出一种基于强化学习的计算卸载算法用于实现计算卸载决策、计算资源和通信资源分配。由强化学习Actor-Critic算法训练得到一个智能体,该智能体会权衡延迟、能耗和流量资费三种性能指标,根据系统参数控制任务卸载决策和资源分配。最后,仿真结果表明本文算法能够有效地降低延迟、能耗和流量资费。3)为进一步完善本文实验设计,更直观地展示本文算法有效性,在上述原有实验方案基础上,设计一种展示计算卸载决策和计算卸载性能的结果展示平台。然后,将本文算法嵌入结果展示平台。其中,移动终端和边缘节点以不同的图形做区分,终端任务的计算卸载决策以颜色表示。最后,本文在实验基础上实现了结果展示平台。通过测试结果展示平台,证明结果展示平台能够直观地展示计算卸载决策,从而验证本文算法有效性。
其他文献
【目的】探究抑郁症肝郁脾虚证是否会出现SIRT1/PGC-1α通路的异常。【方法】纳入健康人(平和质)、肝气郁结型抑郁症患者和肝郁脾虚型抑郁症患者各10例,采集外周血以Western Blot法检测3组受试者的沉默信息调节因子1(SIRT1)、过氧化物酶体增殖物激活受体-γ共激活因子1α(PGC-1α)、核呼吸因子1(NRF-1)、核呼吸因子2(NRF-2)、线粒体转录因子A(TFAM)蛋白表达含
地基合成孔径雷达(Ground Based Synthetic Aperture Radar,GBSAR)系统具备形变测量精度高、观测面积大及可全天候非接触监测等特点,是对露天矿山亚毫米级形变监测的主要技术手段之一。然而地基SAR在长期不间断差分干涉测量过程中难免受环境或系统变化影响,导致差分干涉相位序列中包含的误差相位变化被错位识别为形变,造成形变虚警问题。本文将该问题转化为相位序列的分类问题,
唇语识别是指计算机通过学习说话者嘴唇的动态序列图片变化来识别出说话者所说的语言内容。唇语识别技术的应用范围广,如在国家公共安全防护领域、医学矫正领域等等。目前研究唇语识别大都使用深度学习,然而为了达到高识别率,实现唇语识别的网络模型越来越大,导致难以部署到移动端。因此,本文针对以上问题对传统的MobileNet网络进行优化改进,提出一种轻量化程度更强的FD-MobileNet网络,并利用FD-Mo
为了保障公共安全和社会稳定,监控摄像头被广泛应用于广场、机场和车站等人口密集的公共场所。但是,海量的监控数据对快速检测视频中人体的异常行为提出了挑战。因此针对智能监控领域,利用深度学习技术对监控视频中人体的异常行为进行检测和识别已经成为一个研究热点。受视频中复杂的背景和目标种类较多等因素的影响,异常行为的精确识别面临较大的困难。目前异常行为识别模型存在结构复杂、计算时间长和识别效果差等问题。针对上
随着日常生活水平的提高,同时受到疫情等情况的持续影响,不仅用户侧的用电需求量日益增大,还会出现新的用电行为模式,因此检测用户的用电行为以更好地适应用户需求,并发现潜在问题变得十分重要。目前电力物联数据每天或每小时以百万级的速度产生,并且电力物联数据的种类繁多,蕴含着体现用户用电行为、电能质量、电力设备运行状态等重要信息,所以有必要基于电力物联数据开展用电行为检测。用采数据源自用户侧的智能电表,是电
随着集成电路产业的飞速发展,半导体器件的先进工艺节点已到达5nm,为抑制由半导体器件尺寸微缩所产生的短沟道效应,器件结构从传统的平面设计向着三维的Fin FET器件以及纳米环栅器件等结构发展。另外,绝缘体上硅结构器件以及新材料(比如:低导热率的Si Ge等)也已被引入到了传统的硅基MOS器件中。但是,在器件性能提升的同时,由于密集热产生、热扩散低效等问题引起了更多的可靠性挑战。自热效应的研究对器件
面对互联网发展过程中快速增长的信息,人们可以比以前更方便的接触到各类信息和知识,但是海量的数据也给当前的问答系统带来了挑战,如何快速准确获取有价值的信息成为了当前研究的重点。本文主要研究问答系统中的答案选择任务,任务的关键是计算问题句和候选答案句之间的语义相似度,从而筛选出最符合问题的答案。为了解决以往模型中存在的问答句语义交互较弱和背景信息不足的问题,本文在以BERT模型为基础的深度学习模型上进
随着物联网技术的快速发展和物联网设备的不断增多,网络中的业务种类也越来越丰富,各类业务产生的大量数据流量也随之而来,而不同的物联网设备产生的业务流量对网络的底层资源有着不同的需求,业务流种类和数量的剧增为物联网的管理与用户服务质量的保障带来了巨大的挑战。传统网络仅提供尽力而为的服务,利用节点间的跳数作为评价调度路径优劣的标准,导致网络中的资源分配不均,难以满足物联网用户对不同业务的服务质量需求。软
姿态确定是基于载体的运动学模型和多传感器的测量值,计算载体坐标系和参考坐标系之间的转换关系。姿态确定作为导航的核心技术引起了广泛地关注,已经在航空航天等领域得到实际应用。目前研究热点是如何设计高精度、抗干扰的姿态确定方法。针对传统姿态确定方法精度低、抗干扰能力弱等问题,引入自主性强、误差无累计、可提供绝对航向的仿生偏振传感器,与惯性测量单元、磁强计等传感器互补融合,建立仿生偏振组合导航系统。本文分
信用贷款是国家用有偿方式动员和分配资金的重要形式,是发展经济的有力杠杆。信贷业务在银行业务中占据重要地位,尽管欺诈发生的可能性相对较少,但欺诈产生的影响却可能很大,阻碍着国家数字经济的平稳运行。信贷欺诈现象已经成为不容忽视的问题,因此研究及时准确的信贷欺诈检测方法至关重要。信贷欺诈检测属于异常检测的范畴,异常检测的痛点在于可用数据集中缺乏足够的异常样本,即数据集为类不均衡数据。随着基于深度神经网络